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CHAPTER I

INTRODUCTION

From the first flight made by the Wright brothers, the field of aviation has been

driven by the desire to fly faster and higher [3]. The 20th century marks an exponen-

tial growth in aircraft development both in speed and altitude [3], beginning in 1903

with the Wrights flying at 35 mph at sea level [35], progressing to 400 mph fighter

planes at 30,000 feet in World War II [37], advancing to supersonic aircraft flying at

1200 mph (Mach 2) and cruising at 60,000 feet in the 60’s [36] and finally topped by

the space shuttle flying at Mach 25 from a 200-mile low earth orbit [38].

During the same period, the advent of high-speed missiles and spacecraft also

took place [3], starting from the V2 rocket flying at over 5000 mph at an altitude

of over 200 miles in 1949 [37], continuing to the Mach 25 intercontinental ballistic

missiles and the developments of the spacecrafts Mercury, Gemini and Vostok in the

50’s and 60’s [38] before reaching the historic Mach 36 Apollo spacecraft taking men

to moon and back in 1969 [2]. Either in the case of aircrafts, spacecrafts or missiles,

flying at these extremely high-speeds is known as hypersonic flight.

During a lecture at the von Karman Institute, Belgium in 1970, P.L. Roe made

a remark,

“Almost everyone has their own definition of the term hypersonic. If we
were to conduct a public opinion poll among those present, and asked

1
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everyone to name a Mach number above which the flow of the gas should
properly be described as hypersonic, there would be a majority of answers
round about five or six, but it would be quite possible for someone to
advocate and defend, numbers as small as three, or as high as 12.”

Addressing his graduate class in gas dynamics at Rice University in 1962, H.K Beck-

mann said, “Mach number is like an aborigine counting: one, two, three, four, many.

Once you reach many, the flow is hypersonic”[11].

There is no precise Mach number limit in which the flow is deemed hypersonic

but we will loosely refer to hypersonic flow if the flow Mach number is much greater

than one1. It is not crucial to determine hypersonic flow by its Mach number because

hypersonic flow is best defined as that regime where certain physical flow phenomena

which are neglected in supersonic speeds or lower become important [3], [11].

The most notable feature of hypersonic flow is the high temperature on the body

surface [3], [11], [39]. At the free-stream conditions, the fluid has extremely high

kinetic energy due to its extremely high velocity. The fluid will be decelerated to

almost zero once it reaches the body and there will be an enormous transform of

kinetic to internal energy. As a result, the temperature at the surface will rise giving

tremendous heat transfer at the body. For a Mach 36 flow like the Apollo rocket,

the body temperature may rise up 11,000 degrees Celsius2 [3]. At this temperature,

fluid molecules will dissociate and even ionize and chemical reactions may occur.

Usually a hypersonic vehicle is protected by an ablative heat shield which is of a

complex hydrocarbon nature and will chemically react at these high temperatures

[3]. In other words, hypersonic flights are also characterized by chemically reacting

1M = u
a
≫ 1 where u and a are the local fluid velocity and speed of sound.

2This is about twice the surface temperature of the sun.
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flows [11],[40] which are often absent in supersonic or subsonic3 aerodynamics.

Another feature of hypersonic flow is viscous interaction [3]. As the high velocity

hypersonic flow is slowed down by viscous effects within the boundary layer, by

the same process described previously, there will be an enormous temperature rise

increasing the viscosity coefficient4. This by itself will make the boundary layer

thicker, displacing the inviscid flow5 outside the boundary layer causing a given

body shape to appear thicker than it really is. As a result, the outer inviscid flow

configuration is changed which will in turn, feed back to alter the growth of the

boundary layer. It must be stressed that accurate predictions of both layers are

critical to determine lift, drag and stability of hypersonic vehicles [40].

When a body is subjected to hypersonic flow, the shock forms much closer to the

body as compared to those that are formed in supersonic flow, hence the term thin

shock layer [3]. Across a shockwave, the density of the fluid increases and becomes

progressively larger as the Mach number increases. By conservation of mass, the high

density fluid will flow through smaller areas behind the shock which means that the

distance between the shock and body is small. Near the stagnation region, it is of

the same length scale with the boundary layer thickness. This implies that there will

be shock-boundary layer interactions [39] which are usually ignored in most other

aerospace problems.

3Subsonic flow is when M = u
a
≤ 0.8, transonic is when 0.8 < M ≤ 1.2 and supersonic flow is

in between transonic and hypersonic flows.

4For most fluid dynamics application, viscosity is assumed constant because for temperatures of
3000 degrees Celsius and below, its temperature dependence is almost negligible [11].

5For body subjected to a high Reynolds number flow, viscous (shearing) forces are confined to
a very small region along the body. This region is called the boundary layer and its thickness is
inversely proportional to the square root of the Reynolds number. Outside this region, we have the
inviscid layer where inviscid forces (pressure and flow velocity) are dominant compared to viscous
forces. The ratio of these two forces is the Reynolds number.
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All of the above-mentioned hypersonic flow features are difficult to match and

very costly to accommodate in ground-test facilities [11]. Roe [85] once said,

“The computer is attractive as a replacement for experiments that are
difficult, dangerous or expensive, and as an alternative to experiments
that are impossible”.

In other words, we can predict hypersonic flow through numerical simulations6.

Due to the extremely complex nature of hypersonic flow, its simulation is very

challenging compared to predicting subsonic or supersonic flow [40]. For example,

accurate simulation of heat transfer along the body of hypersonic vehicles requires

accurate prediction of the boundary layer which in turn, is dependent on the inviscid

layer. The inviscid layer, particularly at the stagnation region behind the shock

is dependent on entropy being propagated along the streamlines7 across the shock.

Any anomalies in the captured shock will create irregularities in entropy carried along

streamlines from the shock. Presently, most numerical methods for predicting shocks

in hypersonic flow are incapable of producing truly dependable shock solutions [39],

[40]. In this thesis, our goal is to faithfully capture shocks in inviscid hypersonic

flow. But before we proceed to do so, we need to understand the limitations and

shortcomings of current numerical methods in inviscid flow.

1.1 A Brief History of Numerical Inviscid Flow Algorithms

Despite the complexity of fluid dynamics in general, most successful schemes

in Computational Fluid Dynamics (CFD) are developed based on simple model

6This is the field of computational aerothermodynamics which is computational fluid dynamics
added with high temperature gas effects on pressure, skin friction and heat transfer [40].

7A streamline is defined as the path line which is tangent to the local fluid velocity vector.
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problems in one dimension. The simplest model is the linear advection equation

ut + aux = 0, modelling fluid being advected or propagated constantly in some par-

ticular direction8. Although it is a very simple model, early attempts to solve it

numerically beginning in the 50’s had not been simple [74], [23], [55], [56], [58].

At that time, the schemes that had been developed to solve the linear advection

equation had trouble with both diffusion and dispersion errors. First order schemes

would propagate excessively diffused discontinuities whereas second order methods

produced spurious oscillations around them [74], [57], [82], [70], [56], [22]. Further-

more, all of the schemes would have either lagging or leading phase errors compared

to the true solution [57], [82].

There are many reasons for these drawbacks but the fundamental reason is due

to the shortcomings of discretizing a continuous model. When we discretize, not all

of the fluids physics are retained [87]. In CFD, we commonly choose a few physical

properties of importance, then discretize the model in a way that will faithfully

represent the selected physics and hope that most of the other properties will be

retained or be reasonably accurate. Back in the early days of CFD, it was not all

that clear which physical properties were important and should be chosen as the

underlying physical mechanisms behind the algorithm, although there were a few

candidates.

One strong candidate would be upwinding [23], which enforces information to

travel in a correct physical direction and this can be done by including the physics

of wave-characteristics. Conservation [56] is also important because it ensures that

the fluid’s mass, momentum and energy are neither unphysically created nor de-

8An example of fluid advection would be putting a dye in a streaming river and let it be trans-
ported by the river.
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stroyed. It is natural to wonder if both of these attributes are attainable when fluid

is discretized.

One way to combine them is via a finite-volume (FV) discretization9 of the fluid

[41], [85], [109]. It is a one dimensional Eulerian approach where we define a control

volume (CV) or a cell enclosing the fluid and let the fluid interact with other cells

only through the cell-interfaces (boundaries). Hence, conservation is automatically

satisfied. It must be emphasized that the FV concept is universal in any number of

dimensions [20]. In one dimension, the cell interface is a point; in two dimensions

it is an edge; in three dimension it is a face. However, the FV method requires

explicit knowledge of fluxes at the interface in which upwinding can be implemented.

Consequently, families of flux functions were born [41], [13], [58], [70], [92], [108] [85],

[77].

There are the the Lax-Wendroff family [58], [70], Flux Corrected Transport (FCT)

[13] and the Flux Vector Splitting (FVS) [92], [108] just to name a few. These flux

functions are based on mostly physical propagation normal to the interface [109].

However, as long as the fluids within the cells interact mostly normal to the cell

interface, these flux functions are accurate enough for predicting most engineering

problems in a fairly economical manner [24], [60]. In practice, the FV method is

commonly used to solve not only simple one dimensional fluid dynamic problems but

also complex multi dimensional problems with reasonable success [62], [18], [112].

The most famous flux function is perhaps the Godunov flux [41], [77], [85], [28]

9The FV technique is a discrete integral form of the fluids PDE’s. This integral formulation is
mathematically valid across discontinuities unlike the differential formulation or its discrete version,
the finite difference (FD) method. This makes the FV technique superior than FD methods when
computing flows with shocks. However, the FV technique has ’weak’ or non-unique solutions of the
PDE’s so extra fluid conditions are required to narrow down the possible choices. The common
practice is to include some form of entropy condition.
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due to its apparently strong physical basis. The Godunov flux (or method) requires

solving a Riemann problem at the cell interface10. Solving the Riemann problem

exactly proved to be computationally expensive hence a class of approximate (or lin-

earized) Riemann solvers were developed [77], [85], [28]. Roe’s approximate Riemann

solver [85] is arguably the most successful of these because it implements upwinding

with minimal numerical dissipation, on account of successfully recognizing isolated

discontinuities. This is a highly desirable trait in capturing contact discontinuities

and shocks. One drawback is that it also captures the unphysical rarefaction shock

but this can be remedied with Harten’s entropy fix [46].

In spite of their huge impact on CFD, the original upwinded FV schemes were un-

able to circumvent Godunov’s barrier theorem [41]. The theorem states that schemes

that are linear when applied to linear problems, and that produce solutions free from

spurious oscillations will be only at most first order accurate. This lead to the de-

velopments of nonlinear upwinded FV (or high resolution) schemes which deploy

the concept of modifying the data through limiting before updating the scheme [13],

[107], [46], [94].

Among the earliest to introduce limiting was van Leer [103], [104], [105], [106],

[107] in the 70’s in his series of paper regarding MUSCL type schemes. His concept

was based on geometric considerations in one dimension. The idea is to allow data

to be reconstructed as accurately as possible when there is no danger of spurious

osccillations while clipping the data to first order accurate when there is a danger.

The concept of FV discretization coupled with upwinding and limiting proved

10A Riemann problem is defined as semi-infinite states of fluid separated by an interface. In the
FV context, the two neighboring cells contain two fluid states separated by a common flux-interface
of which solution of the fluid is given by the solution of the corresponding Riemann problem, at
least for small times. At large times, information would arrive from other interfaces.
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to be monumental because it greatly improved capturing of discontinuities and also

tremendously lessened phase errors when solving the linear advection [86]. Moreover,

these ideas were readily transported not only to nonlinear advection equation but

also to almost any system of nonlinear hyperbolic PDE’s11 [21], [34], [112], [64].

These high resolution schemes however, were introduced mainly for predicting

transonic flows in aerodynamics where only weak shocks are encountered [84]. Nev-

ertheless, these schemes have been extensively used to predict moderately strong,

steady shocks in supersonic flows and astrophysical problems with considerable suc-

cess [62], [64]. It is therefore unsurprising that these schemes are also known as shock

capturing methods12. The shock capturing terminology is somewhat an overstate-

ment, because the truth is, most shock capturing methods fall short when predicting

strong shocks in hypersonic flows [79], [81], [78], [25], [39] which is a crucial element

in designing reusable spacecraft and re-entry vehicles. Unfortunately, except for a

few notoriously dissipative shock capturing methods, most other methods seem un-

able to capture strong shocks without producing numerical artifacts [81], [78], [25],

[52], [39], [40]. The most infamous of these artifacts is the “carbuncle” phenomenon.

1.2 “Carbuncles”

Many authors have reported the presence of “carbuncles” when computing high

speed flow past blunt bodies using shock capturing methods [79], [81], [78], [25], [52],

[89], [27]. The earliest report was made by Peery and Imlay [79] when computing

11Some examples include the system of traffic equations, the shallow water equations, the Euler
equations, the Navier-Stokes Equations, Elastodynamics, Electromagnetics and the Magnetohydro-
dynamics (MHD) equations.

12This is as opposed to shock fitting methods [90] where knowledge of the shock location is known
before hand to fit a suitable discontinuous function to represent the shock profile. This is not easy
for complex problems even in one dimension let alone in multi dimensions.
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high supersonic or hypersonic flow past a circular cylinder. They observed that

there were anomalies downstream of the bow shock around the stagnation region

as depicted in Fig (1.2). These anomalies are usually in the form of two counter

rotating spurious vortices (Fig 1.3). In other words, the code solves the problem

as if there was a needle or spike protruding from the cylinder’s stagnation point13.

Instead of having a smooth bow shock, we have a pair of oblique shocks near the

stagnation region [102]. These oblique shocks are weaker compared to the bow shock

compromising the jump conditions. As a result, the stagnation conditions which are

important to predict heat transfer in hypersonic flow are highly inaccurate. In fact,

Fig 1.3 indicates the position of the stagnation point is not even on the body of the

cylinder.

Many have proposed explanation and cures to the carbuncle problem [79], [78],

[63], [66], [52], [25], [91] but none have been universally accepted [89]. The one

proposed by Liou [66] is perhaps until now, the most commonly applied and was

adopted in [52]. He hypothesized that in order to remove the carbuncles, the mass

flux or momentum at the interface must be independent of the pressure difference.

This is disturbingly unphysical. Moreover, the cures proposed in [66], [52], [91], [63]

include artificial dissipation in the direction parallel to the captured shock. If this

would be the way to cure the carbuncle, we should anticipate serious problems in

computing shock-boundary-layer interactions [89]. Moreover, nobody has proposed

how to include this adaptive dissipation on unstructured grids which is the most

natural and efficient grid generation technique for curvilinear bodies. Of course, very

dissipative flux functions like the Steger-Warming [92] and Harten-Lax-van Leer [64]

13This can be simulated experimentally [12].
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Figure 1.4: Navier-Stokes solution for cylinder subjected to M=20 flow for various
Reynolds numbers: 104, 5x104, 105 and 106 (with permission from [78].)

fluxes may not produce carbuncles but they cannot capture contact discontinuities

and tremendously diffuse boundary layers14. If the physical viscosity is included as

in the Navier-Stokes equations, the tendency to form a carbuncle is reduced, but it

disappears only at very low Reynolds number (Fig 1.4) [78]. Nor does it help to

include the real gas15 effects that would accompany very strong shocks in the real

world [27], [39], [40].

We will seek a more fundamental approach to cure the carbuncle. We see that

there are shock distortions in the carbuncle problem but we do not know the root

of this problem. Could it just be poor vorticity handling? Or maybe it is due to

14There are also schemes which adopt a hybrid of very dissipative and less dissipative fluxes,
deploying the former near the shock and the latter away from shock but the basis of switch is
somewhat ad hoc. Furthermore, it is unclear on how the switch would work for complex problems
like shock-boundary layer interactions or shock-contact interactions.

15Real gas effects include fluid particles dissociations, ionizations and chemistry. These are crucial
in high Mach number flow where high temperature gradients exist. In short, the fluid’s specific
heat constant γ is no longer a constant but a function of thermodynamic variables. For most fluid
dynamics problem, we usually regard γ is constant (ideal gas) without losing too much accuracy.
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imprecise control of entropy16? Or could there be more than one culprit involved

here? In this thesis we will answer these questions.

It must be emphasized that for even for inviscid hypersonic flow, we need to

include the physics of chemistry and real gas effects in order for the numerical sim-

ulation to be truly valid. However, we will not do so in this thesis. We leave it to

future research to incorporate these effects, once the fundamental mechanisms are

exposed.

1.3 Numerical Vorticity Control

One way to control vorticity is to use vorticity capturing methods which in com-

pressible CFD, are still for the most part unresolved [88]17. As mentioned before,

most schemes in compressible CFD are based on one dimensional physics. However,

vorticity, which is the angular velocity of the fluid, is a multi dimensional feature.

In three dimensions, there are three components to the vector representing vor-

ticity [8]. Two of them represent shear flow, which can be recognized by upwinding.

The third is helicity or the dot product of vorticity-velocity and has no one dimen-

sional analogue. It is hard to create helicity likewise is equally hard to destroy it

once created. Helicity propagates over large distances and physically it is conserved

along a streamline in inviscid flow. The contrails of vortices behind an aircraft are

16Current FV schemes solve directly for mass, momentum and energy but ’loosely’ enforce physics
of entropy or the second law of thermodynamics. The word ’loosely’ here means that entropy may
still be generated by truncation errors instead of solely by physical mechanisms. A good scheme or
code usually produce spurious entropy within some ’reasonable’ tolerance. The question is what is
’reasonable’?

17The vortex method or vortex blob approach enjoys more success when dealing with vorticity but
at an extreme expense of computational cost [65]. These methods compute time accurate solution
of the vorticity transport equation at the particle level. However, these computational methods are
not conservative.
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examples of propagated helicity.

There are a few issues concerning vorticity capturing [88], [51]. One is viscous

vorticity generation or diffusion which is due to shearing effects of the fluid. Then

there is the inviscid phenomenon of baroclinic generation. We also have inviscid

vorticity propagation which includes vorticity advection, vortex stretchings and di-

latational effects. Vorticity advection represents vorticity purely propagating with

the fluid. On the other hand, the baroclinic contribution occurs when the fluid’s

density gradients are not parallel to its pressure gradients. When this happens, the

fluid element’s center of gravity does not coincide with its geometric center hence

any pressure acting on the fluid element will cause it to spin18. An example for

this would be non-isentropic flow. The vortex stretching effects are driven by the

velocity changes along the direction of vortex lines. This effect accelerates vorticity

when the vortex line is stretched and decelerates when it is compressed. Normally,

vortex stretching is the term that dominates the evolution of small scale structure

in turbulent flow [101]. The dilatation is due to fluid-compressibility effects. It

is often neglected because most vorticity analysis has been done in the context of

incompressible flow [8].

The viscous vorticity generation and the inviscid vorticity propagation compo-

nents are all part of the vorticity transport equations [8]. However, we will not

consider the viscous effects in this thesis. This is because accurate prediction of the

viscous effects can be obtained by grid refinement but the numerical inviscid prop-

agation may take place over large distances without the benefit of refinement. In

other words, the inviscid components may produce spurious vorticity.

18If the density and pressure gradients are parallel, we would have no baroclinic contributions
and it can be shown that this implies ∇p ×∇ρ = 0
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Morton and Roe [73] showed that almost all schemes would produce spurious

vorticity out of truncation errors in the discretized inviscid momentum equations.

They are about an order of magnitude smaller than the accuracy of the scheme but

may become significant by accumulation over time. This implies that for irrota-

tional flow, spurious vorticity may be generated (as demonstrated by the carbuncle

problem) while for rotational flow, the schemes could artificially dissipate vorticity

[51]. This suggests that we should focus our efforts on inviscid flow so that genuine

vorticity capturing methods can be developed.

One possible approach is to use high order schemes to reduce generation of

spurious vorticity19. These schemes however, require larger stencils and hence are

computationally expensive and generally are not robust [47]. Using a compact but

more complicated scheme such as the Discontinuous Galerkin (DG) method requires

smaller stencils but needs storage for higher order moments, thus extensive mem-

ory space is still needed [68]. Also, it is unclear how to incorporate the physics of

19Some examples of high order schemes are ENO, WENO and residual distribution schemes.
There are also schemes from the finite element (FE) context which includes Galerkin and Discon-
tinuous Galerkin methods.
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diffusion (viscous effects) to DG methods although a beginning has been made [111].

An alternative is to modify the existing low-order but robust finite volume schemes

to satisfy the vorticity transport equations. The first attempt was done by Morton

and Roe [73] for the linear wave equations. A similar approach was made by [33]

but still in the context of linear equations20. In this thesis, we will present a novel

approach of controlling vorticity (or vorticity capturing) for nonlinear equations.

It must be emphasized that the application of accurate vorticity capturing is

not only limited to predicting strong shocks or curing the carbuncle. In aerospace

engineering, there are many problems requiring accurate prediction of vorticity, such

as helicopter analysis, high-lift systems and unsteady flight [88], [93] [76], [20]. In

helicopter analysis or VTOL (Vertical Take-Off and Landing) flight, there is the

blade-vortex interaction (BVI). BVI occurs when a helicopter performs a descending

maneuver and its rotor-blades interact with the trailing vortices shed by the blades

20For the record, there are other techniques for predicting vorticity which include vorticity con-
finement, vortex methods, hybrid and finite element methods [88], [1], [93], [65].
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themselves. This interaction causes sudden changes in aerodynamic loading, leading

to blade vibration and aerodynamic instability and consequently the undesirable

chopping noise.

In high lift systems and unsteady flight, the study of trailing vortices are impor-

tant. An example of the former would be a multi-element airfoil in which vorticity is

generated from each element and these vortex systems will interact. The propagation

and interaction of these vortices contribute to the overall lift and drag coeffcients of

the airfoil. In the latter, vortices are shed by the motion of pitch and roll of the

aircraft at high angles of attack. The amount of vorticity being shed during aircraft

maneuvers has a direct influence on the forces produced [76].

All of these problems will benefit from ‘good’ vorticity capturing methods.

1.4 Numerical Entropy Control

The physics of entropy or the second law of thermodynamics is very important in

supersonic and hypersonic flow21. Yet, current schemes still do not enforce entropy

condition in a precise manner [84]. For example, when solving the Euler equations

with any finite volume method, we have conservation of the main variables (mass,

momentum and energy) and we assume entropy is discretely conserved along the

streamlines until a shock appears. However, there is no explicit mechanism within a

common finite volume scheme to discretely preserve entropy. A test of a good scheme

is that this condition be met within some reasonable error tolerance.

We also assume that by capturing only physical shocks, the second law of ther-

modynamics is not violated [60]. In the context of finite volume formulation, an

21Entropy by definition is a measure of a systems state of chaos. The second law of thermody-
namics states that entropy is preserved unless the flow is irreversible [4]. An example would be
when the flow encounters a shock.
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entropy condition is deployed to some schemes to destabilize discontinuous rarefac-

tion shocks into continuous profiles. The mechanism to enforce this, however, is a

form of imprecise artificial dissipation.

Without an accurate and proper control of entropy, it is likely that entropy is

spuriously created within the flow and it may be shown that this actually happens.

For some schemes, improper handling of entropy may result an incorrect entropy

production across a shock22. As a result, the second law of thermodynamics is

locally unsatisfied. We suspect that the imprecise enforcement of the second law

of thermodynamics is one of the reasons contributing to the failure of accurately

capturing strong shocks.

It is possible that by including the concept of entropy more directly we can

improve the current technology of capturing strong shocks. This can be achieved by

insisting entropy conservation for smooth data and entropy consistency when a shock

is encountered during the flux discretization process. The earliest known approach

was done by Tadmor [95] in the 80’s at semi-discrete level in one dimension. His

flux function conserves entropy exactly for smooth data. However, the fluxes are

computationally expensive and are unstable as soon as a shock forms. Roe [84]

developed a more practical entropy conserving flux to present some hope of enforcing

a precise entropy condition.

To overcome shock instability, we need to produce entropy across a shock23.

Schemes that satisfy this property are classified as entropy-stable schemes. Roe

devised an entropy-stable flux function [84] in which requires some form of averaging

22We will witness that this happens for the original Roe-flux when capturing a strong stationary
shock in chapter 2.

23Stability proofs are usually given in terms of mathematical entropy, which is negative of the
physical entropy S, can be defined as positive and always decreases.
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which is relatively simple but incomplete. We will present a complete entropy-stable

flux function in this thesis.

However, an entropy-stable scheme still does not generate the precise entropy

production across a shock. Schemes that produce ‘enough’ entropy across shocks

such that the solution is monotone and conserves entropy elsewhere are defined as

entropy-consistent schemes. We will formulate an entropy-consistent flux function

and elaborate and validate all of these ideas more rigorously in this thesis, which will

be organized as follows.

1.5 Thesis Outline

In chapter 2, we will re-introduce the carbuncle phenomenon in a more detailed

fashion. We will begin with some review both analytically and numerically. We will

also introduce the simplified carbuncle problems both in 1 1/2 and 1 dimensions and

how these simplified versions assist our investigation and improve our understandings

on the subject.

We will introduce the concept of vorticity preservation in two dimensions in chap-

ter 3. We will begin with the linear wave equations specifically starting from the work

of Morton and Roe. We will continue their work by including a process of limiting

and discuss the shortcomings of their elegant idea. The methodology of vorticity

correction will be introduced here.

One of the goals of this research is to develop a second order vorticity capturing

scheme solving the Euler equations in three dimensions. However, we will introduce

the concept first in two dimensions and this will be the subject of chapter 4. The

scheme will reduce to the implemented finite volume method in one dimension, but

in higher dimensions will also locally satisfy discrete vorticity transport equations.
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This will be the new ideology of vorticity capturing. For applications, we will use

the scheme to model a travelling vortex and compare its quality with conventional

finite volume method based on Roe-solver. We will then utilize the scheme to attack

the carbuncle problem.

In chapter 5, we will introduce the concept of entropy conservation law for a

scalar equation, specifically, the inviscid Burgers equation. In a general mathematical

context, entropy is defined as a convex function that satisfies certain properties. For

the Burgers equation, there are many choices of such function but we will select

the one that is the most mathematically convenient and at the same time bears

some physical interpretation. Once entropy is defined, we will thoroughly discuss

the concepts of entropy stability and consistency. Then, we will derive an entropy

consistent scheme for the Burgers equation. Finally, we will include some numerical

examples to demonstrate the quality of the scheme.

In chapter 6, we will discuss the concept of entropy conservation law applied to

the system of Euler equations. We will begin with its history and the current state

of the technology, discussing the limitations and shortcomings in more detail. Then

we will introduce Roe’s entropy conserving flux function as a practical approach to

conserve entropy and enforce stability. We will extend his work by including entropy

consistency and present the complete averaged states for entropy stability. Finally,

we will apply the scheme to the carbuncle problem in 1, 1 1/2 and 2 dimensions.

Chapter 7 will draw a conclusion to this thesis and will discuss some possible

extension of the current work.



CHAPTER II

THE CARBUNCLE PHENOMENON

2.1 Introduction

Numerical shock prediction is a very important aspect of computing aerodynamic

flows. Earlier attempts were made in the shock fitting context [72], [90] which re-

quires the knowledge of the shock location before-hand in order to place a suitable

discontinuous function to represent the shock. Although this idea works well in one

dimension however, it becomes restrictively complex in multi dimensions [61]. An

alternative to this idea would be shock capturing where the code would naturally rec-

ognized shocks that are forming, or those which are already present. We have briefly

discussed shock capturing methods in the previous chapter and will not delve fur-

ther into details of this idea but would refer the interested reader to some references

[41], [85], [109], [46], [60]. In short, shock capturing methods are more successful

than the shock fitting methods and have become the foundation of aerodynamic

computations. However, there are still limitations to the shock capturing techniques

particularly when dealing with strong shocks.

The mathematical principle of shock capturing is based on the Lax-Wendroff

Theorem [58] stating that conservation plus stability yield convergence to a weak

solution. Conservation is satisfied with a finite volume method while stability can

20
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be obtained by some form of upwinding of the numerical fluxes. The question is

whether all of the converged weak solutions are truly the ones that we desire1?

The finite volume method represents the fluid by its mean value within a control

volume which interacts with another control volume only through the flux-interface.

This requires implementation of discrete flux functions at the interfaces. The most

famous is perhaps the Godunov flux which requires a solution of the Riemann prob-

lem at the interface. In spite of its strong physical basis, the Godunov flux is un-

able to capture strong shocks without incurring numerical artifacts. This is also

true for most shock-capturing methods except for a few extremely dissipative ones

[78],[25],[81]. The most commonly observed artifact is the carbuncle phenomenon2.

The first to report the carbuncles were Peery and Imlay [79] for a flow past a

circular cylinder using shock capturing methods. They observed that there seem to

be anomalies downstream of the bow shock rather than a smooth configuration. This

was also confirmed by several other authors [25], [91], [81]. Quirk [81] introduced

a simpler version of the carbuncle in which a perturbed one-dimensional shock is

propagated in a two dimensional setting. The shock perturbation is done by utilizing

non-uniform grids. He observed that the shock would break up and behave similarly

to carbuncles demonstrated in the flow past a cylinder. He hypothesized that this is

a form of numerical instability.

There were attempts to examine the carbuncle problem from an analytical stand-

point, in particular from the perspective provided by the mathematical instability of

1As mentioned in chapter 1, usually some form of entropy condition is used to limit our choices
but is this good enough?

2By definition of dictionary.com, a carbuncle is a painful localized bacterial infection of the skin
and subcutaneous tissue that usually has several openings through which pus is discharged. In
layman’s view, this just acne hence in our context carbuncle is a numerical acne.
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Figure 2.1: Shock captured by the Roe-
method for hypersonic flow
(M=20.0) past a cylinder.
Instead of having a smooth
bow shock for the U-velocity
profile, there exists a pair of
oblique shocks near the stag-
nation region. Behind these
oblique shocks, negative ve-
locities exist indicating a re-
circulation zone.
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Figure 2.2: The quadrilateral structured
grids with 80 cells in the ra-
dial direction and 160 cells in
the angular direction.

an ideally narrow shockwave. This classical instability problem was first studied by

Dyakov [26] and later presented by Landau and Livschitz [53] and extended by Robi-

net et. al [83] in the context of the carbuncle. The idea is to use a linearized model

of the fluid3 and find normal modes for subsonic flow downstream of the stationary

normal shock. It is assumed that along the shock a sinusoidal perturbation is present

while normal to it, a form of exponential perturbation exists. We will briefly present

and discuss some of their results later in this chapter. The most important result

that we want to highlight now is that the shock stability or instability depends only

on the jump conditions imposed by the shock, which in turn depend on the equation

3In this case, it is the linearized Euler equations.
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Figure 2.3: Zooming into the stagnation region of Fig. 2.1. Note how there is a
circulation region behind the oblique shock which represents spurious
vorticity.

of state. For an ideal gas, all shocks are stable [53], [83]. This further supports

Quirk’s [81] theory that the carbuncle is purely a numerical artifact.

Dumbser et. al [25] converted the discrete shock instability problem to a nu-

merical eigenvalue problem. However, besides confirming that most shock capturing

methods are susceptible to the carbuncle problem, they offer little insight into its

mechanism. They nevertheless gathered extensive numerical data on the carbuncle.

Pandolfi and d’Ambrosio [78] collected extensive numerical data for the supersonic

flow past a cylinder 4 in which carbuncle may or may not happen. They too concurred

that most shock capturing methods are carbuncle prone.

Although there are no unstable perturbations to the downstream flow that are

compatible with any displacement of an ideally narrow shock, it is possible that they

4They also included the effects of physical viscosity and observed that there is carbuncle even
for relatively low Reynolds number (O(104)) which further supports the argument that carbuncle
phenomenon is a pure numerical artifact.
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Figure 2.4: The residual (in absolute value) plot for the Roe flux for Mach 20 flow
past a two-dimensional cylinder. By the time the solution goes to steady-
state, it would have produced a spurious but weakly consistent solution
of the Euler equations.

could be compatible with the displacement of a captured shock, having a numerical

structure [6], [83]. In most of these carbuncle incidents, authors [78], [79],[81] have

reported that the carbuncle satisfies all tests for weak solutions of the Euler equations.

This includes entropy satisfying discontinuities5 and shocks that satisfy the correct

jump conditions. However, instead of producing a smooth bow shock, these solutions

mimic shock profiles of two dimensional or axisymmetric blunt bodies with a thin

spike protruding from its stagnation point subjected to high Mach number flows [12].

It is unfortunate that the carbuncle phenomenon occurs in shock capturing meth-

ods that deploy flux functions which are designed to capture discontinuities with min-

imal smearing. In order to cure the carbuncle, Liou proposed that the momentum

or mass flux across the cell interface has to be independent of the pressure differ-

5Although the definition of entropy here is not precise.
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ence [66]. This led to the development of the AUSM (Advected Upstream Splitting

Method) flux and other flux functions that have this property ([66], [67], [52]). Al-

though these flux functions are consistent with an Euler solution, this underlying

principle is nonphysical. More importantly, we will witness later in this chapter that

the AUSM and AUSM+u fluxes still suffer from the 1 1/2 dimensional carbuncle

phenomenon.

To be truly carbuncle-free, most schemes require some form of artificial dissipation

to those interface normal to the captured shock [89]. We suspect that even the AUSM

flux-family requires this form of artificial dissipation to remove shock instabilities.

This was also the strategy employed by Lin [63] and Sanders et. al [91]. In short, this

strategy requires knowledge of the shocks whereabouts to deploy dissipation. It may

be fairly easily implemented on Cartesian or structured grids but it is unclear how to

extend this to unstructured grids. More importantly, should this strategy be accepted

as cure for the carbuncle, predictions for shock-boundary layers interactions would

be severely inaccurate [89]. This is because the dissipation would damp out velocity

gradients parallel to the shocks compromising velocity profile within the boundary

layer. We believe that we can offer a better cure for the carbuncle phenomenon.

So far, we have highlighted the history and developments of the carbuncle prob-

lem hence forth the rest of the chapter will be organized as follows. First, we will

introduce simpler versions of the carbuncle phenomenon which are essentially per-

turbed normal stationary shocks albeit in 1 1/26 or 1 dimensions. Then we will the

apply the Roe flux7 [85], the original AUSM and the more recent AUSM+u flux

6The 1 1/2 dimensional carbuncle are essentially vertical stacks of the 1 dimensional carbuncle.
In other words, most of the physics of the former will be in the horizontal direction although we
allow it to propagate in the vertical direction as well.

7The flux formulation is included in appendix D
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functions [67] to these simplified carbuncles to observe the phenomenon based on

first hand experience. Some analytical and numerical results will be included to sup-

port these observations. Finally, based on all of these findings, we will formulate a

hypothesis on how to cure the carbuncle.

2.2 The 1 1/2 Dimensional “Carbuncle”

2.2.1 Initial Set Up

This simplified carbuncle problem was designed first by Quirk [81] and improved

by Dumbser et. al [25] which can be described by a steady one dimensional shock

wave computed on two-dimensional uniform Cartesian grids. Basically, this is solv-

ing the two dimensional Euler equations to (hopefully) produce a one dimensional

solution. Our initial and boundary conditions are identical to theirs [25], except

that we assumed the outflow (right) to leave the domain by setting zero slopes in all

ghost cells on the right and that our top and bottom boundaries are solid walls. This

carbuncle problem may be driven by small perturbations to the variables upstream

of the shock, or it may arise spontaneously without being provoked8. We introduced

very small perturbations, of order 10−14 as seedings to instability. We used 25 x 25

uniform Cartesian grids with Courant number ν = 0.8. The shock profile satisfies

the Rankine-Hugoniot9 jump conditions with the following description.

Assuming M0 is the upstream Mach number with the ratio of specific heats or

8Sometimes, all it takes is just rounding errors.

9The Rankine-Hugoniot condition represents the physical condition of the fluids mass, momen-
tum and energy across a shock.
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Figure 2.5: The initial condition for the
1 1/2 dimensional carbun-
cle with M0 = 3.0. This a
Mach number contour plot
with upstream conditions on
the left side of the shock.
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Figure 2.6: The corresponding vorticity
plot. From now on, we
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tours on the left figures and
the vorticity contours on the
right.

air γ = 1.4, the normalized upstream and downstream conditions are given by

u0 =

[

1 1 0 1
γ(γ−1)M2

0

+ 1
2

]

u1 =

[

f(M0) 1 0 g(M0)

γ(γ−1)M2

0

+ 1
2f(M0)

]

(2.1)

where f(M0) and g(M0) follow from the jump conditions of density and pressure

across the shock denoted by

f(M0) = (
2

(γ + 1)M2
0

+
γ − 1

γ + 1
)−1

g(M0) =
2γM2

0

(γ + 1)
− γ − 1

γ + 1
(2.2)

We applied the first order FV method with Roe-solver on this simplied carbuncle

problem for various combinations of Mach numbers and grid configurations. Quite

surprisingly, we observe that there is a universal pattern to the evolution of the

planar shockwave instability. This was also reported by Roe, Nishikawa, Ismail and

Scalabrin [89] in which they also included tests on different schemes.



28

XCoord

Y
C

oo
rd

-0.5 0 0.5
-0.5

0

0.5

Figure 2.7: The first (pimples) stage rep-
resent initial shock instabil-
ity seeded by a small pertur-
bation to one cell upstream
of the shock.

XCoord

Y
C

oo
rd

-0.5 0 0.5
-0.5

0

0.5
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generated along the shock.

2.2.2 The Stages of “Carbuncle”

Based on our observations, the carbuncle consistently developed in three stages.

We will use notations and definitions developed by Roe, Nishikawa, Ismail and Scal-

abrin [89] to describe each stage. In addition, we will include vorticity contour plots

to demonstrate strong correlations between spurious vorticity generation and shock

instability. The Mach profiles will be on the left whereas vorticity contours will be on

the right. Although we have only included results for initial data with M0 = 3.0 and

γ = 1.4, the pattern is similar with other fluid specific heat ratios γ for sufficiently

large upstream Mach numbers. An estimate for ’sufficiently’ large Mach number can

be seen in Figure 2.32. It is striking that the carbuncle pattern is broadly independent

of grid size and the choice of Courant number.
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from first stage become
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are advected downstream.

Stage 1: “Pimples”

In the first stage, the instabilities are in the form of spots contained within the

shock profile. These spots are “wavelike”, travelling back and forth parallel to the

shock and this is true for all conservative and primitive variables. However, the

exact structure of these waves are dependent on the type of seedings in the initial

data. These waves may be sinusoidal and their amplitudes and periodicity in the

y-direction of the waves can be different. More importantly, now we start to see

blobs of spurious vorticity being produced along the shock.

Stage 2: “Bleeding”

Depending on the upstream Mach number, the first stage or pimples may not last

long. The pimples will bleed downstream of the shock forming a series of a parallel

alternating jets. These are not so obvious within the pressure contour but are most

visible in the Mach number, velocity and vorticity contours. The alternating jets are
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Figure 2.12: The size and magnitude of
the vortex sheets are now
much larger.

in the form of converging and diverging jets. The former have fast velocity which can

become supersonic whereas the latter possess slow subsonic velocity. These velocity

disturbances will progressively grow until the slow jets are virtually stagnant causing

flow imbalance at the shock. Eventually the flow will go into reverse penetrating

upstream of the shock.

Stage 3: “Carbuncles”

Once reverse flow occurs, the normal shock breaks down into several self-similar

regions featuring oblique shocks. These oblique shocks encapsulate wedge-shaped

regions downstream of the shock in which the core of each region consists of fluid

that is almost stagnant. Behind each oblique shock, there exists a pair of vortex

sheets of roughly the same magnitude (at least for this case) but rotating in opposite

direction to each other. In general, the strength of the two counter rotating vortices

may not be equivalent and the two are not necessarily symmetric. However, it must

be noted that the angle in which these oblique shocks make are almost identical from



31

TimeStep

R
es

id
ua

l

0 25000 50000 75000 100000
10-12

10-10

10-8

10-6

10-4

10-2

100

Figure 2.13: Residual plot for the 1 1/2 dimensional carbuncle. Note that oscillations
represent shock instability which eventually decays. Even though the
residual decreases to O(10−6) for this case, the solution has converged
to the ’wrong’ steady state. However, this ’wrong’ steady state value is
consistent with a weak solution of the Euler equations.

run to run. This is also true for initial data with various seedings. When we vary

the upstream Mach numbers, the oblique shock angles are slightly different but the

overall pattern remains the same.

Sometimes, the shock may drift to the left or to the right because once instability

has developed, the boundary conditions are not capable of fixing the shock to a

particular location. In other words, the shock itself is adjusting to find its most

’comfortable’ location10. At other times, the shock remains in the middle for quite a

long time and the carbuncle might disappear only to be replaced by others.

Dumbser et. al [25] observed the same behavior of the carbuncles. Moreover, [89]

reported that their multidimensional fluctuation-splitting scheme produced similar

carbuncle results to our finite volume method results. This further support our hy-

pothesis that the carbuncle phenomenon are of similar patterns and indeed universal.

10From a more physical perspective, the shock is moving along the Rankine-Hugoniot curve
searching for its most compatible spot.
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Once you have seen a carbuncle, it is fair to say that you have seen all of them.

2.2.3 Improved Set Up

The normal shock location in the 1 1/2 dimensional carbuncle may drift within the

computational domain. This is not like the behavior of the 2 dimensional carbuncle

where we have the shock fixed upstream of the cylinder. To achieve a fixed normal

shock location for the 1 1/2 dimensional carbuncle, we need to alter the boundary

conditions.

We intend to prescribe the proper boundary conditions at the inflow and outflow

boundaries. The inflow is purely supersonic so we can prescribe the inflow ghost

cells with the initial upstream Rankine-Hugoniot conditions. These are the inflow

conditions of the initial set up and were also adopted by Dumbser et. al [25]. The

outflow boundary however, is a subsonic outflow hence we can prescribe a condition

here that will ensure that the shock is fixed11. We chose to prescribe a constant mass

flux at the outflow boundary so that the total mass within the system remains the

same hence the normal shock has to remain stationary12. In other words, the new

1 1/2 dimensional carbuncle problem has the exact set up as before except that we

now fix the mass flux to be unity at the outflow boundary. By doing so, the 1 1/2

dimensional carbuncle is consistent with and a truly 1 1/2 dimensional version13 of

the 1 dimensional carbuncle set up (will be explained in section 2.3.1). From now on,

11By fixing the shock location, we have removed another degree of freedom for the carbuncle

12To see this, let us sum all the mass in each cell upstream and downstream of the normal shock.
If the shock moves, then the total mass in the system is no longer the same because we have
different mass contributions from the upstream and downstream portions. If we fix the total mass,
the normal shock cannot move since no mass entering or leaving the system.

13The 1 1/2 dimensional carbuncle problem are stacks in the y-direction of the 1 dimensional
carbuncle problem.
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Figure 2.14: Initial Mach profile with
M0 = 8.0 of the improved
set up.
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Figure 2.15: Stationary shock solution
for AUSM flux at T=10000.
Except that the shock pro-
file is slightly smeared, the
solution looks ‘good’ (at
least for now).

the 1 1/2 dimensional carbuncle problem will be referred to the new set up instead

of the initial set up.

Results of the original Roe-flux are similar to those before hence will be omitted

for brevity. It is clear that for the shock location predicted by the Roe-flux has

moved although there is an explanation for this. We have fixed the total mass in the

system to ensure the normal shock does not move. However, in the 1 1/2 dimensional

carbuncle, if the instabilities go all the way to the carbuncle stage, the normal shock

structure is broken down to several oblique shocks which are weaker in strength. For

the system to compensate for these weaker ‘jumps’ across the discontinuities and

still maintain the total mass, the oblique shock has to move. If the instabilities are

just pimples, we expect the normal shock to remain almost stationary as we will see

with the AUSM fluxes.

Results of the AUSM fluxes solving the 1 1/2 dimensional carbuncle are pre-
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Figure 2.16: Shock solution for the
AUSM flux at T=25000.
Notice that we now have
a stage 1 instability with
long waves instead of short
waves as depicted earlier.
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Figure 2.17: Shock solution for AUSM+
u flux at T=30000 with
stage 1 instability (short
waves).

sented (Figs. 2.15-2.23). Clearly, the original AUSM and AUSM+u flux functions

also suffer from shock instabilities. These instabilities are “pimples” which are usu-

ally eliminated [63] with some form of artificial dissipation parallel to the shock. As

mentioned before, this form of artificial dissipation will compromise shock-boundary

layer prediction. Moreover, it requires shock curvature detection which may be easily

performed on a structured Cartesian mesh solving 1 1/2 dimensional carbuncle prob-

lem. However, it is not clear how to implement such dissipation on an unstructured

mesh solving a more complicated problem.

To summarize, we have found that the AUSM family of fluxes also experience

an anomalous shock instability, but typically at a larger wavelength. Also, it takes

a much longer time to set in, and goes through a stage during which it appears to

converge and stable.
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Figure 2.18: Shock solution for AUSM
flux at T=75000 in which
the shock is sloshing left
and right repeatedly. This
suggest that there is still an
inherent instability which
can be implied from the
residual history.
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Figure 2.19: Shock solution for AUSM+
u flux at T=100000. The
shock is also sloshing left
and right repeatedly here.

2.2.4 Analysis of “Bleeding” Stage

As mentioned before, the fully developed carbuncle (or stage 3) is a ‘weak’ but

consistent solution to the non-linear Euler equations, therefore it is almost impossible

to perform a simple mathematical analysis here. Our best hope to perform such

analysis is either in the first stage where instability is weak or the second stage

where some parts of the flow can be linearized.

Note that for the first two stages, the anomalies are located within and down-

stream of the shock. However, we will first focus our analysis downstream of the

shock by linearizing this subsonic region. This approach is similar to the classical

shockwave stability analysis performed by Dyakov [26] and Landau and Livschitz

[53]. We begin by considering possible perturbations downstream of the shock in
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Figure 2.20: Residual plot for the pure
AUSM flux. The growth
of residual indicates the
growth of shock instabil-
ity. Note that the resid-
ual is relatively high even
after 100000 time steps
which implies that the in-
herent instability does not
go away.
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Figure 2.21: Residual plot for the pure
AUSM+u flux.

which instability may occur. Before we start our analysis we will derive the lin-

earized Euler equations. Recall that the two-dimensional isentropic Euler equations

can be written as

∂tρ+ u∂xρ+ ρ∂xu+ v∂yρ+ ρ∂yv = 0 (2.3)

∂tu+ u∂xu+ v∂yu+
1

ρ
∂xp = 0 (2.4)

∂tv + u∂xv + v∂yv +
1

ρ
∂yp = 0 (2.5)

∂tS + u∂xS + v∂yS = 0 (2.6)

where (ρ, u, v, S) are the fluids density, velocities and entropy. For isentropic flow,
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Figure 2.22: Vorticity contour plot
for the AUSM+u flux at
T=30000. Notice that spu-
rious vorticity is produced
along the shock.
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Figure 2.23: Enstrophy plot for the
AUSM+u flux solving 1 1/2
dimensional carbuncle with
M0 = 8.0. Note that
the generation of spurious
vorticity generation peaks
at approximately the time
that the shock instability
occur (T=25000).

the speed of sound is given as a2 = ∂p
∂ρ

, so that

∂tp+ u∂xp+ v∂yp = a2(∂tρ+ u∂xρ+ v∂yρ)

The mass equation can be replaced by a pressure relation hence

∂tp+ u∂xp+ v∂yp+ ρa2(∂xu+ ∂yv) = 0 (2.7)

∂tu+ u∂xu+ v∂yu+
1

ρ
∂xp = 0 (2.8)

∂tv + u∂xv + v∂yv +
1

ρ
∂yp = 0 (2.9)

∂tS + u∂xS + v∂yS = 0 (2.10)

We will now perform linearization with respect to the mean flow denoted by hat
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variables such that

p = p̂+ p
′

(2.11)

u = û+ u
′

(2.12)

v = v̂ + v
′

(2.13)

S = Ŝ + S
′

(2.14)

ρ = ρ̂+ ρ
′

(2.15)

a = â+ a
′

(2.16)

Assuming that perturbation products are negligible, our system becomes

∂tp
′

+ û∂xp
′

+ v̂∂yp
′

+ ρ̂â2(∂xu
′

+ ∂yv
′

) = 0 (2.17)

∂tu
′

+ û∂xu
′

+ v̂∂yu
′

+
1

ρ̂
∂xp

′

= 0 (2.18)

∂tv
′

+ û∂xv
′

+ v̂∂yv
′

+
1

ρ̂
∂yp

′

= 0 (2.19)

∂tS
′

+ û∂xS
′

+ v̂∂yS
′

= 0 (2.20)

We are almost ready to perform our analysis. For small perturbations to the 1 1/2

dimensional stationary shock, we will assume the mean flow M is purely normal to

the shock implying that there is no advection component in the y-direction. If we

let the mean flow density and speed of sound to be unity and that define the mean

flow to be M = û
a
, thus

∂tp
′

+M∂xp
′

+ ∂xu
′

+ ∂yv
′

= 0 (2.21)

∂tu
′

+M∂xu
′

+ ∂xp
′

= 0 (2.22)

∂tv
′

+M∂xv
′

+ ∂yp
′

= 0 (2.23)

∂tS
′

+M∂xS
′

= 0 (2.24)
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Hence the linearized 1 1/2 dimensional Euler equations written in vector form

are given by

∂tw + A∂xw +B∂yw = 0 (2.25)

where w = [p
′

, u
′

, v
′

, S
′

]T and the matrices A and B are

A =





















M 1 0 0

1 M 0 0

0 0 M 0

0 0 0 M





















, B =





















0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0





















(2.26)

Now we use the method of normal modes where an arbitrary disturbance may be

resolved into independent modes of the form

w = exp[ξx− θt+ iky]rij (2.27)

where (ξ, k, θ) are wave numbers in the x,y-directions and frequency with rij be-

ing columns of right eigenvectors to be determined. Applying equation (2.27) into

equation (2.25), we have the following.




















Mξ − θ ξ ik 0

ξ Mξ − θ 0 0

ik 0 Mξ − θ 0

0 0 0 Mξ − θ





















w = 0 (2.28)

For nontrivial solutions, we require that

det





















Mξ − θ ξ ik 0

ξ Mξ − θ 0 0

ik 0 Mξ − θ 0

0 0 0 Mξ − θ





















= (Mξ − θ)2[(Mξ − θ)2 − (ξ2 − k2)] = 0

(2.29)
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in which the roots of θ are [Mξ−(ξ2−k2)
1

2 ,Mξ,Mξ,Mξ+(ξ2−k2)
1

2 ]. The repeated

roots correspond to shear (or vorticity) and entropy disturbances while the other two

represent acoustic disturbances. After performing some algebra, we can determine

the corresponding eigenvectors in the order of the eigenvalues above.

rij =





















√

ξ2 − k2 0 0 −
√

ξ2 − k2

ξ −ik 0 ξ

ik ξ 0 ik

0 0 1 0





















(2.30)

Hence the solutions of the perturbed quantities are

w = exp[ξx− θit+ iky]rij (2.31)

in which θi are the eigenvalues of the system with their corresponding eigenvectors rij.

These eigenvectors decompose the solutions into their acoustic, shear and entropy

components.

To find out if these disturbances are linearly independent, we form det(rij) =

−2(ξ2 − k2)
3

2 = 0. This vanishes if k = ξ, when the shear and acoustic disturbances

are indistinguishable because their eigenvectors and eigenvalues are identical. This

is a dependent mode in the form of resonance which may give birth to growth and

consequently instability14. Thus, the unstable modes are in the form of

w = exp[k(x−Mt) + iky]





















0 0 0 0

k −ik 0 k

ik k 0 ik

0 0 1 0





















(2.32)

14If we perform more analysis of the case k = ǫ, that is by obtaining the generalized eigenvectors,
we will have an unstable vortical mode [26]
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Figure 2.24: L2-norm of velocity diver-
gence squared downstream
of the shock.
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Figure 2.25: L2-norm of enstrophy (vor-
ticity squared) downstream
of the shock.

with k being a real-positive wave number. These modes convect with the flow along

the x−Mt characteristics and are divergence free since ux + vy = exp[k(x−Mt) +

iky][(k2 − ik2 + k2)+ (−k2 + ik2 − k2)] = 0. These modes were intuitively mentioned

but rejected by [115] as an explanation to why carbuncles occur because he believes

that a parallel plane flow should always be stable. However, we will not discard these

unstable modes as one of the sources of carbuncle.

The prediction for zero velocity divergence is demonstrated in our second stage

computations. Even though the solution is violently changing, the norm of velocity

divergence remains virtually zero the whole time (Fig (2.24)). However, Fig. (2.25)

show that spurious vorticity grows rapidly with the onset of second stage and reach

its peak once stage three sets in. This suggests that inadequate vorticity control

could be the reason that the bleeding stage develops into a carbuncle.
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2.2.5 Analysis of “Pimple” Stage

Now we need to determine whether the unstable modes are compatible with the

boundary conditions of a physical shock. The boundary conditions that connects

the subsonic region and the shock are given by the Rankine-Hugoniot relations. For

any two dimensional small disturbances in an infinite homogeneous domain with an

arbitrary equation of state, Dyakov [26] proved that the shock is unstable when either

one of the inequalities below is satisfied.

j2(
∂V̄

∂p̄
)H < −1

j2(
∂V̄

∂p̄
)H ≥ 1 + 2M1 (2.33)

whereM1 is the downstream Mach number, V̄ is the mean specific volume, j2 = p̄1−p̄0

V̄1−V̄0

is the slope of the Rayleigh line and (∂V̄
∂p̄

)H is the slope of the Hugoniot curve in the

pressure-volume plane.

Assuming M0 is the upstream Mach number, Robinet et. al [83] showed that for

an ideal gas,

j2(
∂V̄

∂p̄
)H = − 1

M0

(2.34)

We can deduce that for any ideal gas, the instability condition (Eqn. (2.33)) can

never be satisfied which implies that the unstable modes are incompatible with a

physical shock.

However, Barth [6] indicated that these unstable modes are compatible with the

boundary conditions imposed by a numerically captured shock. His analysis was

based on a one-dimensional computation of a stationary shock.
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2.3 The 1 Dimensional “Carbuncle”

2.3.1 Initial Set Up

This is a steady one dimensional problem in which an intermediate cell within a

shock is introduced and perturbed to induce shock instability. The initial conditions

are given by the same normalized upstream and downstream states in the 1 1/2

dimensional but are dimensionally reduced.

uL =

[

1 1 1
γ(γ−1)M2

0

+ 1
2

]

uR =

[

f(M0) 1 g(M0)

γ(γ−1)M2

0

+ 1
2f(M0)

]

(2.35)

where f(M0) and g(M0) follow from the jump conditions of density and pressure

across the shock given by

f(M0) = (
2

(γ + 1)M2
0

+
γ − 1

γ + 1
)−1

g(M0) =
2γM2

0

(γ + 1)
− γ − 1

γ + 1
(2.36)

where M0 and γ are the upstream Mach number and the gas specific heats ratio. The

boundary conditions are identical to the improved 1 1/2 dimensional carbuncle but

in one dimension. This includes the fix mass flux at the outflow boundary ρu = 1.0.

The intermediate states within the shock are defined as

uC = ǫuL + (1 − ǫ)uR (2.37)

where ǫ = 0.0, ..., 1.0 is a discrete weighting average. This is to perturb the interme-

diate state away from the Hugoniot curve and investigate if the state suffers from

instability. A good numerical flux function should be stable for all of the prescribed

states but apparently not for the Roe-flux.
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Figure 2.26: Initial condition for the sta-
tionary shock with M0 =
8 and ǫ = 0.7 using Roe
solver.
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Figure 2.27: Solution at T=1000.

2.3.2 The Profile of a One Dimensional Carbuncle

Figures (2.26)-(2.29) indicate the nature of one dimensional carbuncle15. The

shock structure has an intermediate state that is bounded by the left and right

primitive variables but the conservative variables such as momentum may not be

bounded. While the solution is trying to converge to equilibrium, the intermediate

states may oscillate inside the shock in order to find their most compatible spot

along the Rankine Hugoniot curve forming a limit-cycle. This is a form of intrinsic

instability since the solution fails to converge to steady state even after T=100000.

(Fig (2.30)). The results of this one dimensional carbuncle is repeatable for Mach

numbers above some critical value and for any grid size. Before we determine this

critical Mach number, we will first present the work of Barth [6].

15For certain choices perturbation to the intermediate state, ǫ = 0.0, 0.1, 0.9, 1.0, the Roe-flux
maintained sharp, monotone and stable shock profiles. However, for other choices of ǫ, the Roe-flux
suffers from shock instabilities.
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Figure 2.28: Stationary shock at
T=1700. Note that
the solution returned to its
initial values.
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Figure 2.29: Stationary shock at
T=3400. The interme-
diate cell moves again and
the cycle repeats itself
indefinitely Note that
this process is repeatable
with other γ and other
sufficiently high upstream
Mach numbers.
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Figure 2.30: Residual plot for the one dimensional carbuncle. Clearly, there is an
inherent instability hence the solution does not converge.
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2.3.3 Analysis of 1 Dimensional Shock Instability

Equilibrium Configuration

Consider the one dimensional Euler equations written in conservative form.

∂tu + ∂xf(u) = 0 (2.38)

where u = [ρ, ρu, ρE]T and f(u) = [ρu, ρu2 + p, ρuH]T 16. We will discretize the

equations semi-discretely for a control volume xj− 1

2

≤ x ≤ xj+ 1

2

such that

h∂tuj = fj− 1

2

− fj+ 1

2

(2.39)

where uj and fj± 1

2

are the discrete cell values of u and numerical flux functions

evaluated at cell interfaces. Note that h is the cell-grid size.

The conservative variables are assumed to be mean values within each cell and

interactions with other cells only take place at the interfaces via the numerical flux

functions. The solution will be a sequence of cells, all in left state uL followed

by another sequence of cells in the right state uR. The left and right states are

separated by a shock satisfying the Rankine-Hugoniot jump conditions. Since the

flow is in equilibrium, we have f(uL) = f(uR). For the data to be continuous, we

must consider intermediate cells within the shock. The simplest case is when we

have just one intermediate cell which can be achieved via Godunov-type flux. For

the Godunov-type flux, there will be an internal state uC within the shock such that

all the states (uL, ...,uL,uC ,uR...uR,) are in equilibrium. This implies that

f(uL) = f∗(uL,uC) = f∗(uC ,uR) = f(uR) (2.40)

16E = u2

2 + e is the total energy of the system with e as the fluids internal energy. H = E + p is
the total enthalphy and e = p

ρ(γ−1) is the equation of state for closure. Again, γ is the fluid specific

heats.
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which means the equilibrium jump conditions17

f∗(uL,uC) − f(uL) = f∗(uC ,uR) − f∗(uL,uC) = f(u)R − f∗(uC ,uR) = 0 (2.41)

must be simultaneously satisfied18. Based on the fact that there are always exactly

two states u that corresponds to a given f∗, these are satisfied only if uCR and uCL

take on either the left or right state values [6]. More precisely, the intermediate

solutions must be restricted to19

uCL = uL uCR = uR (2.42)

Based on the direction of shock propagation combined with the jump conditions,

Barth showed that conditions (2.42) are satisfied for the Godunov type flux if the

following constraints are met.

ρL ≤ ρC ≤ ρR

pL ≤ pC ≤ pR

uL ≥ uC ≥ uR (2.43)

Stability of Equilibrium

Barth [6] indicates that the wave structure of the Godunov-type flux identifies

a single degree of freedom (DOF) when a stationary one dimensional discontinuity

is present. For example, given any pair of states (uL,uR) satisfying f(uL) = f(uR),

17The jump conditions express conservation of the fluid across a stationary or moving disconti-
nuity. For a scalar problem in one dimension, the discontinuity is bounded by left and right states

of the fluid in which the following condition [f(u)]
[u] =

f(u)
R
−f(u)

L

uR−uL

= Λ is satisfied. Note that Λ is

the speed of discontinuity and the derivation of this formula is included in appendix H.

18
f
∗ denotes flux at a cell interface.

19
uCL refers to the intermediate state values at its left cell interface and likewise, uCR is at its

right cell interface.
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there is a one parameter family of states uC satisfying 2.43 such that the flux residual

r(uC ;uL,uR) = f∗(uC ,uR) − f∗(uL,uC) (2.44)

has a singular Jacobian matrix20. To understand the implication of this, consider

solving a system of one intermediate cell, uC with boundary data uL and uR

∂tuC + r(uC ;uL,uR) = 0 (2.45)

We can linearize the system near a stationary solution ū since r(uC ;uL,uR) = 0.

Define the solution error e = uC − ū satisfying

∂te + ∂uC
r(ū) = 0 (2.46)

in which its solution is in the form of

e(t) =
3

∑

i=1

(kiri exp(−λit)) (2.47)

with λi and ri as the ith eigenvalues and eigenvectors of ∂uC
r(ū) and ki as the solution

coefficients. Barth showed that only 3 computational cells with fixed boundary data

uL and uR need to be considered when solving this numerical eigenvalue problem.

For the system to be stable, all of the eigenvalues must be nonnegative but that is

not the case (refer [6] for details). For an arbitrary perturbation to the data, he

discovered that not all of these equilibria are stable.

In other words, instability depends on where the shock sits relative to a grid.

This somewhat explains why the shock shifts in the 1 1/2 carbuncle and perhaps

the jagged shock appearance when solving the two-dimensional flow past a cylinder,

(Fig (2.31)) even if the shock is stable [89].

20Mathematically, this means that the system has a zero eigenvalue. Refer to [6] for proof and
details
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Figure 2.31: This is a steady state solution of a mono atomic gas γ = 5/3 with
upstream Mach number M0 = 6.0. Note the shock structure exhibit
kinks instead of a smooth profile along the shock. This is because the
shock has adjusted itself to achieve local stability (courtesy of Roe et.
al [89]).

Barth also found that for a particular value of γ, the instability only occurs for

Mach numbers higher than some critical value. We conducted a numerical experiment

using Roe-flux to verify this in which our one-dimensional results are consistent with

his (Fig. (2.32)). [89] fitted a function to this Mach number versus γ and found out

the critical Mach number in one dimension is given by

Mcrit =
3 − γ
5
3
− γ

(2.48)

which implies that for γ = 5
3

or mono-atomic fluids are carbuncle-free! However, Roe

et. al numerically verified carbuncles still occur in cylinder flows even for γ = 5
3

so

there is still much to be explored in curing the carbuncle.
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Figure 2.32: Critical Mach Number versus γ for the Roe flux. For γ = 1.4, Mcrit =
6.5 in one dimension and 2.0 in two dimensions. The results in one
dimension agrees with Barth’s but slightly higher than Robinet et. al’s
in two dimension. Perhaps the difference is we did not include the case
as unstable unless it reaches Stage 2.

Entropy Stability of Equilibrium

Strictly speaking, an inviscid fluid must satisfy the system of conservation laws

(equation 2.38) and also the following inequality

∂tU + ∂xF ≤ 0 (2.49)

where U = −ρg(S) is the entropy function and F = −ρug(S) is the entropy flux.

The variable g(S) is some convex function of the physical entropy S = lnp + γlnρ.

For smooth flows, 2.49 is an equality and is known as the entropy conservation law.

When shocks are present, entropy is produced in the flow and to account for this, we

need the inequality21. This is known as the entropy stability condition. We will see

that the numerical prediction of the system conservation laws does not necessarily

satisfy the entropy stability condition.

21Stability proofs are usually given in terms of mathematical entropy, which is negative of the
physical entropy S, can be defined as positive and always decreases.
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First, let us precisely define the entropy function and its flux [84].

U =
−ρS
γ − 1

, F =
−ρuS
γ − 1

(2.50)

We have chosen this entropy function because it is the only entropy function that

can be used for the Navier-Stokes equation [49] and also because it gives a fairly

simple form of the entropy variables defined as

v =
∂U

∂u
= [

γ − S

γ − 1
− 1

2

ρ

p
(u2),

ρu

p
,−ρ

p
]T (2.51)

Assuming [a] = aR − aL is the difference between the left and right states to the

interface, the numerical flux function at the interface ∗ can be written as

f∗ = f̄ − 1

2
D[u] (2.52)

where D is the dissipative matrix. For the original Roe-flux, DRoe = R|Λ|L in which

the dissipative matrix is decomposed into the the eigenvalues and the right and left

eigenvectors and of the system satifsying equation 2.38. For the system of Euler

equations, these eigenvalues and eigenvectors are defined in appendix A.

Barth [7] had shown that for the numerical flux to be entropy stable, the following

condition has to be satisfied.

[v]T |D|[u] ≥ 0 (2.53)

We will offer a counter example to show that this condition is not satisfied by the

original Roe-flux. Appealing to the test case and data presented by Barth, in which

a stationary shock (with M0 = 8.0 and γ = 1.4) with an intermediate cell C, is
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perturbed22 away from the left state and have the following values.















ρC

uC

pC















=















1.00182

7.99621

0.72240















,















ρR

uR

pR















=















5.56522

1.43750

53.21429















(2.54)

By numerical computation,

[v]T |DRoe|[u] = −0.1355392 (2.55)

which implies that the Roe-flux does not satisfy the entropy-stability condition and

hence violating the Second Law of Thermodynamics. Based on all of the results of

the perturbed one dimensional shock and the discussions that have been presented, we

propose a conjecture that the shock instabilities are caused by imprecise enforcement

of entropy conditions or the the second law of thermodynamics.

Some Remarks on Conventional Entropy Conditions

Recall that the second law of thermodynamics states that the fluids physical

entropy, S = ln p−γln ρ is an increasing function, which can be enforced analytically

if one of the three entropy conditions below are satisfied [60]. This is because from

an analytical standpoint, all of these conditions coincide.

Entropy Condition I

The fluids entropy should remain constant along a particle path for smooth flow

and will only increase when a shock is encountered.

Entropy Condition II

This basically restricts the left and right characteristic speeds with respect to the

22In practice, the perturbation can be in the form of round-off errors.
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speed of discontinuity Λ i.e.

λL ≥ Λ ≥ λR (2.56)

Entropy Condition III

u is a valid entropy solution, if it is a solution of the PDE with vanishing viscosity.

∂tu + ∂xf = ∂x(α∂xu) (2.57)

as α → 0 from above. This implies that a discontinuity has zero thickness. Due to

the nature of finite discretization, satisfying this condition is impossible. However,

it is customary that the quality of a numerical scheme is judged based on how much

a captured discontinuity is smeared in which less is better.

Numerically speaking, we normally choose one of these conditions and hope the

other two will be satisfied to within some error tolerance. Usually condition II

or something similar is used to enforce the second law of thermodynamics mainly

because it is the simplest and relate directly to the computed variables. In this

context, the second law of thermodynamics is enforced only by allowing physical

shocks to be captured and not the unphysical rarefaction shocks [46]. This method

of enforcing the entropy condition is also known as the entropy fix to destablize

rarefaction shocks. In this thesis, we will include the second law of thermodynamics

more than just being able to distinguish physical or unphysical shocks, by directly

including the entropy conservation law in the numerical flux function. This will be

discussed in chapters 5 and 6.

2.4 Concluding Remarks

In short, the carbuncle phenomenon is a numerical shock instability problem

which depends on the choice of numerical scheme predicting the shock. It is known
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that schemes which have the least numerical dissipations are more susceptible to

the symptoms of carbuncle. There has been extensive research conducted both the-

oretically and numerically, on the carbuncle phenomenon and many have tried to

determine its roots to provide possible explanations to the problem but met only

with some success. There are also others who have proposed cures to the problem

but none of them are universally accepted. Until now, the most commonly applied

cure is based on Liou’s hypothesis which claims that the mass flux of a numerical

flux function must be independent of the the pressure difference. This is one of the

underlying principles for the design of later members of the AUSM family.

We have included the one dimensional carbuncle results for the original AUSM

flux and the more recent AUSM+u flux (Figures. 2.33-2.34). Both flux functions do

not produce shock instability for any configuration of the intermediate state hence
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are free from the one dimensional carbuncle. However, they still suffer from the 1

1/2 dimensional shock instabilities (Fig 2.16-2.17) which implies that the AUSM flux

functions may require some form of artificial dissipation parallel to the normal shock

in order to remove the instabilities. Overall, this suggests that the general idea of

the AUSM flux is not the way to prevent the carbuncle.

In this chapter, we have conducted systematic numerical experiments to under-

stand the nature of the carbuncle problem in which can be categorized into three

distinct stages: pimples or the initial shock instability; bleeding, in which the insta-

bility is propagated downstream of the shock and third stage, the full carbuncle. It

will be unwise to cure the carbuncle at the third stage because its solution is another

weak-consistent solution of the Euler equations [81],[25],[78]. The goal is to prevent

the carbuncle from reaching the third stage, hence any form of cure to carbuncle has

to begin from either the pimples or bleeding stage. In this thesis, we aim to prevent

the carbuncle before reaching the pimples stage.

We have demonstrated that the carbuncle is a spurious solution of the Euler

equations attributed to possibly more than one factor. One factor is attributed to

imprecise entropy conditions while another strong candidate would be poor vorticity

handling. The two can be related using Crocco’s Theorem23. Unfortunately, it is not

clear which of the two is the root or main culprit. However, results of the AUSM

scheme indicate that perhaps the cure to the carbuncle is of a multi dimensional

nature. Hence we will first attempt to prevent the carbuncle by controlling vorticity,

which will be the subject of the next two chapters.

23The theorem relates the production of vorticity to the change of entropy along the streamlines
[8].



CHAPTER III

VORTICITY PRESERVATION IN LINEAR

WAVE EQUATIONS

Most aerospace problems contain strong vortical flows yet until now, capturing

these flows without resolving to vortex methods or vortex blob approach1 remains

elusive [88]. The underlying numerical difficulty lies in discretely solving a nonlin-

ear system of equations with differential constraints. There is much experience in

computing conservation laws under differential constraints. For example, in incom-

pressible fluid dynamics there is the velocity divergence constraint ∇ · ~u = 0, and in

Magnetohydrodynamics (MHD) we have constraints on the magnetic field ∇· ~B = 0.

In both contexts, there have been substantial success in predicting such flows which

include many techniques but essentially can be divided into three general ideas [98].

The first idea utilizes source terms in the conservation laws to remove discrepan-

cies within the cells which are conflicting with the differential constraints [14], [80],

[42], [99]. In the MHD framework, an example would be Powell’s method [80] which

has been used to efficiently compute MHD problems with considerable success. This

method is relatively cheap and does not require any subiteration or constraints on the

1As mentioned in the first chapter, these methods are much more expensive numerical method
compared to continuum CFD [65] and are not conservative.

56



57

variables or staggered grid formulations. Unfortunately, this method compromises

conservation and may not be suitable for flows with strong discontinuities [98].

The second idea is the ’projection’ or ’clean-up’ method [14], [9], [19]. In short,

this idea includes a sub-iteration within a time-step solving a Poisson-type equation

forcing the solution to obey some differential constraints. This methodology satisfies

conservation and also does not require any constraints on the variables. However, it

requires sub-iterations within a time-step which may be costly [98].

The third idea is referred to as the constrained-transport formulation which pre-

serve the differential constraints in a specific discretization [32], [5]. Schemes which

are based on this idea usually require staggered grid formulations. At every time-

step, the scheme will preserve the differential constraints within the computational

domain (at particular grid locations) as long as the boundary conditions are compat-

ible with the constraints. Except for some restrictions on the variables and the use of

staggered grids, the scheme does not require any subiterations and can be designed

to be conservative.

Before we begin our journey in preserving vorticity, we need to address a few

issues. One is the fundamental difference between preserving vorticity and preserving

magnetic field divergence. The former comes from nonlinear equations whereas the

latter is of linear origins2. Also, preserving the divergence of magnetic fields requires

only ∇ · ~B = 0 to be satisfied at all times but unless the flow remains irrotational,

preserving or conserving vorticity requires unsteady-nonlinear predictions of velocity-

curl.

2By definition, vorticity is curl of velocity and velocity is computed from the nonlinear mo-
mentum equations. Although the fluid dynamics equations in MHD are nonlinear, magnetic fields
satisfy the linear advection equations.
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Two, we need to distinguish the notion of vorticity preserving and vorticity control

(or capturing) in general. The latter refers to prediction of vorticity, either rotational

or irrotational, which satisfies the vorticity transport equations. The inviscid version

of these equations are another form of the Euler equations and govern the complete

physics of inviscid3 vorticity which includes advection, dilatation, vortex stretchings

and baroclinic terms. In short, these equations must also be satisfied when solving

the discretized Euler equations. If we assume initially irrotational flow and that

there are no physical mechanisms to generate vorticity then the flow should remain

irrotational. In this case we say that the vorticity is preserved. We will only focus on

irrotational flow in this chapter hence the term vorticity preserving is appropriate.

Three, is the issue of discretizing vorticity, which is a derivative function of the

main variables. To compute discrete vorticity, we need inputs from more than one

cell. Hence it is not straightforward how and where to enforce vorticity control. One

guideline is to define and preserve discrete vorticity in a way that produces the least

spurious modes (odd-even decoupling). The only option is then to compute compact

vorticity (appendix G) as opposed to regular central differencing. Using the compact

method, we use cell values as input but the output lies at the vertex. Throughout

this thesis, we will compute discrete vorticity only at the vertices.

Morton and Roe [73] developed the vorticity preserving schemes for the linear

wave equations based on the constrained-transport ideology [32], [5], [98]. These

schemes are members of the Lax-Wendroff family. Similar methods have also been

developed by Torihillon and Fey [33] but all of these schemes preserve vorticity only

for linear wave equations. Moreover, none of these schemes address limiting which

3We will not include viscous effects in this thesis for the reasons that were mentioned in chapter
1.
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is essential to circumvent Godunov’s Theorem when computing compressible fluid

dynamics with high order schemes. In this chapter, we will present a method which

includes limiting and at the same time, preserving vorticity.

First, we will start from the simple vorticity preserving Rotated Richtmyer scheme

developed by Morton and Roe [73]. We will re-derive the scheme and then prove that

this elegant idea breaks down when nonlinear limiters are included even for linear

systems. We will then formulate a new methodology to preserve vorticity in order to

include limiters when solving the linear wave equations. This idea is easily extendable

to solving system of nonlinear equations in particular, the Euler equations.

In general, vorticity is a three dimensional problem and our ultimate goal is

to produce a vorticity capturing scheme for the three dimensional system of Euler

equations. However, for the purpose of preliminary research we will restrict ourselves

to two dimensions and start from the system of linear wave equations. The system of

wave equations is chosen instead of the scalar wave-equation4 because of two reasons.

One, the scalar version implies vanishing vorticity whereas the latter is what we want

to study. Two, the system of wave equations describes the simplest interaction of

wave propagation and vorticity which must be examined and understood before we

can control vorticity in the Euler equations5.

We will now derive the system of linear wave equations from the Euler equations.

Starting from the two-dimensional conservative Euler equations, we have

4∂ttu − ∂xxu − ∂yyu = 0

5As mentioned before, the physics of vorticity within the context of Euler include advection,
dilatation, vortex stretchings and baroclinic effects which are nonlinear. However, for the system
of wave equations, vorticity depends only linearized advection and acoustic propagation.
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∂tρ+ ∂x(ρU) + ∂y(ρV ) = 0 (3.1)

∂t(ρU) + ∂x(ρU
2 + P ) + ∂y(ρUV ) = 0 (3.2)

∂t(ρV ) + ∂x(ρUV ) + ∂y(ρV
2 + P ) = 0 (3.3)

∂t(ρE) + ∂x(ρUH) + ∂y(ρV H) = 0 (3.4)

representing conservation of mass, momentum and energy6. We shall assume isother-

mal conditions, so the last equation drops out. We will perform linearization with

respect to the mean properties of the flow denoted by hat quantities. By ignoring

the products of perturbation quantities (denoted by prime values), the linearized

variables are

ρ = ρ̂+ ρ
′

(3.5)

ρu = (ρ̂+ ρ
′

)(û+ u
′

)

≈ ρ̂û+ ρ̂u
′

+ ûρ
′

(3.6)

ρv ≈ ρ̂v̂ + ρ̂v
′

+ v̂ρ
′

(3.7)

ρu2 = (ρ̂+ ρ
′

)(û+ u
′

)2

≈ ρ̂û2 + 2ρ̂û2u
′

+ û2ρ
′

(3.8)

ρv2 ≈ ρ̂v̂2 + 2ρ̂v̂2v
′

+ v̂2ρ
′

(3.9)

P = p̂+ p
′

(3.10)

We shall insert these results into the mass and momentum equations. After perform-

6The total energy is the sum of internal and kinetic energy of the fluid given by E = e+ 1
2 (U2 +

V 2). The total enthalphy is H = E + P
ρ
. To obtain closure, the equation of state P = eρ(γ − 1) is

utilized where γ is assumed constant and depends on the type of fluid (γair = 1.4).
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ing some simplification, the linearized isothermal Euler equations can be written as

∂tρ
′

+ û∂xρ
′

+ ρ̂∂xu
′

+ v̂∂yρ
′

+ ρ̂∂yv
′

= 0 (3.11)

∂tu
′

+ û∂xu
′

+
1

ρ̂
∂xp

′

+ v̂∂yu
′

= 0 (3.12)

∂tv
′

+ û∂xv
′

+ v̂∂yv
′

+
1

ρ̂
∂yp

′

= 0 (3.13)

Recall that for isothermal Euler equations, the ideal gas law is given by P = ρao
2

where ao is the constant speed of sound. From the linearized pressure term we get

P = p̂+ p
′

= (ρ̂+ ρ
′

)a2
o (3.14)

This implies that p̂ ≈ ρ̂a2
o and more importantly p

′ ≈ ρ
′

a2
o. Applying these relations

in the linearized isothermal Euler and making a few manipulations we have

∂t(
p
′

ρ̂a2
o

) + ao(
û

ao

)∂x(
p
′

ρ̂a2
o

) + ao(
v̂

ao

)∂y(
p
′

ρ̂a2
o

) + ao(∂x(
u

′

ao

) + ∂y(
v

′

ao

)) = 0 (3.15)

∂t(
u

′

ao

) + ao(
û

ao

)∂x(
u

′

ao

) + ao(
v̂

ao

)∂y(
u

′

ao

) + ao∂x(
p
′

ρ̂a2
o

) = 0 (3.16)

∂t(
v

′

ao

) + ao(
û

ao

)∂x(
v

′

ao

) + ao(
v̂

ao

)∂y(
v

′

ao

) + ao∂y(
p
′

ρ̂a2
o

) = 0 (3.17)

which alters the mass equation into a pressure relation. Introduce non-dimensionalized

variables such that

p =
p
′

ρ̂a2
o

(3.18)

u =
u

′

ao

(3.19)

Mx =
û

ao

(3.20)

My =
v̂

ao

(3.21)
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Inserting these notations into the linearized isothermal Euler we get

∂tp+ ao(Mx∂xp+My∂yp+ ∂xu+ ∂yv) = 0 (3.22)

∂tu+ ao(Mx∂xu+My∂yu+ ∂xp) = 0 (3.23)

∂tv + ao(Mx∂xv +My∂yv + ∂yp) = 0 (3.24)

which is the system of linear wave equations. If we let u = [p, u, v]T as the non-

dimensionalized variables, we can write the system in compact advection form

∂tu + aoTu = 0 (3.25)

where the differential operator is

T =















Mx∂x +My∂y ∂x ∂y

∂x Mx∂x +My∂y 0

∂y 0 Mx∂x +My∂y















(3.26)

This set of equations can be further simplified by assuming no advection which

becomes the linear acoustic problem. We will begin from there.

3.1 Preserving Vorticity For Two Dimensional Acoustic Equa-
tions: The Rotated Richtmyer Scheme

Let the non-dimensionalized variables u = [p, u, v]T satisfy the following system

of acoustic equations.

∂tp+ ao(∂xu+ ∂yv) = 0 (3.27)

∂tu+ ao∂xp = 0 (3.28)

∂tv + ao∂yp = 0 (3.29)

We will discretize the above equations to preserve vorticity on uniform Cartesian

grids.



63

, ωp’, u’, v’

Q, V

P, U

h

h

p, u, v

Edges

Vertices

Cells

x

y
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3.1.1 On Two Dimensional Cartesian Grids

Before we attempt to discretize the equations, we shall introduce the grid rep-

resentation. As mentioned before, vorticity preservation depends on the choice of

discretization. We choose a configuration such that the main variables are conserved

within the cell and vorticity is preserved at the vertices. Note that cell coordinates

are denoted by (i, j) whereas vertex coordinates are given by (i± 1
2
, j ± 1

2
). We will

use some notations developed by Morton and Roe [73] and introduce new notations

to extend their work. To ensure discrete conservation, we draw a control volume

around a point of interest and write the point update as an integral around this

volume. To achieve discrete conservation, we will discretize the acoustic equations

as a cell-centered finite volume method defined as

(un+1 − un)h2 + (δxf
∗ + δyg

∗)h∆t = 0 (3.30)
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Figure 3.2: Flux Interface Requirements for Preserving Vorticity. Note that the in-
terface pressures must must be evaluated as averaged quantities at the
vertices (denoted by pairs of arrow).

where (f∗,g∗) are the numerical fluxes in (x, y) directions to be determined under

a certain constraint. Let the Courant number be ν = ao
∆t
h

, then our formulation

becomes

pn+1 = pn − ν(δxU + δyV ) (3.31)

un+1 = un − νδxP (3.32)

vn+1 = vn − νδyQ (3.33)

Define compact vorticity7 as

ω = µyδxv − µxδyu = Lω(u) (3.34)

Preserving vorticity requires

0 = ωn+1 − ωn

= Lω(un+1 − un)

= −ν[0,−µxδy, µyδx][(δxU + δxV ), δxP, δyQ]T

= −νδxδy(µxP − µyQ) (3.35)

7This is as opposed to central differencing ω = µxδxv − µyδyu and note that the definition of
discrete operators are included in appendix G



65

In order to remove spurious vorticity due to pressure terms, Morton and Roe require

that

µxP = µyQ (3.36)

Rewrite the edge values P,Q in terms of cell values p, u, v and define r
′

to be some

quantity defined at vertices satisfying

P = µyr
′ (3.37)

Q = µxr
′ (3.38)

Hence we have

µxP = µxµyr
′ (3.39)

µyQ = µxµyr
′ (3.40)

and 3.36 is satisfied. To obtain a second order accuracy on a 9-point stencil, we need

r′ = µxµyp+
dt

2

∂p

∂t
+ ...

= µxµyp−
dt

2
(∂xu+ ∂yv)

= µxµyp−
ν

2
(µyδxu+ µxδyv) (3.41)

which relates vertex quantities to cell center quantities. This value of r′ will be used

to determine pressure at the edges (P,Q) in order to update the discrete velocities

hence

un+1 = un − νµyδxr
′ (3.42)

vn+1 = vn − νµxδyr
′ (3.43)
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Construction of Evolution Matrix

We are now almost ready to construct an evolution scheme for u based on a

matrix operator K that will update the solution

un+1 = un −Kun (3.44)

where from our analysis so far we have

K =















?? ?? ??

νµxµ
2
yδx

1
2
ν2µ2

yδ
2
x

1
2
ν2µxµyδxδy

νµ2
xµyδy

1
2
ν2µxµyδxδy

1
2
ν2µ2

xδ
2
y















(3.45)

The discrete adjoint property of matrix K requires it to be symmetric [73], hence

K12 = K21 and K13 = K31. We now have every component for matrix K except for

the first component. Before we attempt to find this component, note that the flux

or edge velocity U is

U = µxµ
2
yu

= µy(µxµyu)

= µyu
′

(3.46)

where u
′

= µxµyu is an average of cell velocities evaluated at the vertices. We want

to write the horizontal velocity U = µyu
′

in terms of cell velocity u on a 9-point

stencil with second order accuracy thus

u′ = µxµyu+
dt

2

∂u

∂t
+ ...

= µxµyp−
dt

2
∂xp

= µxµyp−
ν

2
µyδxp (3.47)
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Figure 3.3: The Rotated Richtmyer Scheme. Dash lines indicate half-step whereas
solid lines indicate full-step.

We can rewrite the edge velocity U = µxµ
2
yp − ν

2
µ2

yδxp and by similar arguments

V = µ2
xµyp− ν

2
µ2

xδyp. Insert these results into our evolution matrix so that

K =















1
2
ν2(µ2

yδ
2
x + µ2

xδ
2
y) νµxµ

2
yδx νµ2

xµyδy

νµxµ
2
yδx

1
2
ν2µ2

yδ
2
x

1
2
ν2µxµyδxδy

νµ2
xµyδy

1
2
ν2µxµyδxδy

1
2
ν2µ2

xδ
2
y















(3.48)

Morton and Roe [73] noted that this can be written as

K = νTδA[µxµyI −
1

2
νTδa] (3.49)

where TδA is a discrete version of equation (3.26) (omitting the advection terms)

denoted by

TδA =















0 µyδx µxδy

µyδx 0 0

µxδy 0 0















(3.50)

Hence we can write the evolution as a two-step scheme with

u
′

= [µxµyI −
ν

2
TδA]un (3.51)
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will serve as a half-step providing provisional solution at vertices. The full step

un+1 = un − νTδAu
′

(3.52)

uses half-step solutions to update the cells. This is the Rotated Richtmyer scheme and

has properties of second order accuracy with conservation8, symmetry of operators

and most importantly vorticity preservation.

3.1.2 Including Limiters

We attempt to include a limiting procedure at the half-step. Since vorticity is a

multi dimensional physical problem, perhaps it is best to utilize multi dimensional

limiting. However, much of multi dimensional limiting are uncharted territories,

and to begin working on the vorticity preserving scheme using this approach is an

arduous task. Thus, we will be content with limiting based on one-dimensional

considerations. There are many ways to construct one dimensional limiting in solving

system of equations [94], [109], [107], [13]. To name a few, there are the Flux-

Correctional Transport (FCT) [13], MUSCL-type reconstruction [107] and the Flux-

Limiting schemes [94]. In this chapter, we will embrace the Flux-Limiting ideology.

Before we begin constructing the limiters, consider the following.

Lemma 1 For r
′

= f(x, y, t) defined at a vertex, where f is an arbitrary function,

vorticity is preserved at the vertices for the Rotated Richtmyer scheme solving the

two-dimensional acoustic equations.

8This is a finite volume method in which the interface flux is determined by the quantities at the
two vertices that define the interface unlike many finite volume method where the interface flux is
computed using neighboring cell values sharing a common interface. The flux therefore depends on
six cell values. It is easy to see that if it only depends on two values, the condition of 3.36 cannot
be met.
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Proof

Let P and Q to be pressures located at the vertical and horizontal interface as defined

before. Assume f(x, y, t) to be any function defined at the vertices so that

P = µyr
′

= µyf(x, y, t)

Q = µxr
′

= µxf(x, y, t) (3.53)

Appealing to commutative property of the discrete averaging operator we have

µxµyf(x, y, t) = µyµxf(x, y, t) (3.54)

This is equivalent to

µxP = µyQ (3.55)

which is our vorticity preserving requirement. This implies that the only requirement

for vorticity preservation is that pressure at the flux interface (edge) must come from

the vertices.

Corollary 1 The Rotated Richtmyer scheme is vorticity preserving when solving the

two-dimensional acoustic equations if a one-dimensional type of limiter is used for

all variables.

Now we are ready to construct a limiting procedure for the Rotated Richtmyer

scheme. Recall that the slope of vertex variables in the x-direction can be com-

puted via compact differencing using four cell values surrounding the vertex. Define

∆x and ∆y as the discrete slopes at the vertices hence

∆xu
′

= µyδxu (3.56)
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Referring to Fig 3.4, in order to limit the slopes of any variable at vertex M , we

require that

∆lim
x u

′

M = φ(φ(∆xu
′

M ,∆xu
′

L), φ(∆xu
′

R,∆xu
′

M)) (3.57)

will give the limited slope in the x-direction. The slope limiting function φ(a, b) is

based on one dimensional geometric principles [107], [94]. Similarly,

∆lim
y u

′

M = φ(φ(∆yu
′

M ,∆yu
′

B), φ(∆yu
′

T ,∆yu
′

M)) (3.58)

will give limited slope in y-direction. The limited compact differencings can be

written as

µyδ
lim
x u = ∆lim

x u
′

(3.59)

µxδ
lim
y u = ∆lim

y u
′

(3.60)

Thus the limited half-step operator is given

T lim
δA =















0 µyδ
lim
x µxδ

lim
y

µyδ
lim
x 0 0

µxδ
lim
y 0 0















(3.61)

The Rotated Richtmyer scheme is then written as

u
′

= [µxµyI −
ν

2
T lim

δA ]un (3.62)

as the limited half-step. The full step

un+1 = un − νTδAu
′

(3.63)

is the same as before. The limiting function φ(a, b) can be any of the usual one-

dimensional limiters9.

9These include but are not limited to the Minmod, Harmonic, van Albada and Superbee
limiters[94].
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Figure 3.4: Limiting procedure. First, compute the slopes at the vertices via compact
differencing using values at four surrounding cells (line with arrows).
Then perform limiting on these slopes based on adjacent vertices (L,R)
and (B,T) to the middle vertex M dimension by dimension (thick solid
lines) before performing half step.
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3.2 Preserving Vorticity For Two Dimensional Linear Wave
Equations

We will now include advection and investigate how that will effect the Rotated

Richtmyer vorticity preserving scheme. We will also explore the possibilities of in-

serting limiters.

3.2.1 Including Constant Advection

Let [p, u, v]T satisfy the following system of wave equations with non-dimensionalized

constant advection (Mx,My).

∂tp+ ao(Mx∂xp+My∂yp+ ∂xu+ ∂yv) = 0 (3.64)

∂tu+ ao(Mx∂xu+My∂yu+ ∂xp) = 0 (3.65)

∂tv + ao(Mx∂xv +My∂yv + ∂yp) = 0 (3.66)

Using same description for P and Q and introducing horizontal and vertical edge

velocities, we have the following discretization.

pn+1 = pn − ν(MxδxP +MyδyQ+ δxU + δyV ) (3.67)

un+1 = un − ν(MxδxU1 +MyδyU2 + δxP ) (3.68)

vn+1 = vn − ν(MxδxV1 +MyδyV2 + δyQ) (3.69)
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 Q, U2, V2

Figure 3.5: Vorticity Preserving Requirements

Preserving vorticity requires

ωn+1 − ωn = Lω[un+1 − un]

= −Lων















δx(MxP + U1) + δy(MyQ+ V2)

δx(MxU1 + P ) + δy(MyU2)

δx(MxV1) + δy(MyV2 +Q)















= ν[µxδy[δx(MxU1 + P ) + δy(MyU1)] − µyδx[δx(MxV1) + δy(MyV2 +Q)]]

= ν[δxδy(µxP − µyQ) + µxδy(δx(MxU1) + δy(MyU2)) − µyδx(δx(MxV1) + δy(MyV2))]

= ν[δxδy(µxP − µyQ) − δxMx(µyδxV1 − µxδyU1) − δyMy(µyδxV2 − µxδyU2)]

(3.70)

We have introduced separate edge velocities (see Fig 3.5). Let U1 and V1 be the

u and v velocities advected at the vertical edges while U2 and V2 be its u and v

velocities advected at the horizontal edges. Let us relate the edge velocities to vertex

quantities. Define

U1 = µyr
′

u (3.71)

V1 = µyr
′

v (3.72)

U2 = µxr
′

u (3.73)

V2 = µxr
′

v (3.74)
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We want a compact 9-point stencil for cell velocities and the only way to achieve this

is by setting

r′u = µxµyu (3.75)

As before, to obtain second order accuracy we require

r′u = µxµyu+
dt

2

∂u

∂t
+ ...

= µxµyu−
ν

2
(Mxµyδxu+Myµxδyu+ µyδxp)

= µxµyu−
ν

2
(µyδx(Mxu+ p) + µxδy(Myu)) (3.76)

Similarly we need

r′v = µxµyv +
dt

2

∂v

∂t
+ ...

= µxµyv −
ν

2
(Mxµyδxv +Myµxδyv + µxδyp)

= µxµyv −
ν

2
(µyδx(Mxv) + µxδy(Myv + p)) (3.77)

Applying results of r′u and r′v, U1, U2, V1 and V2 becomes

U(.) = µ(..)(µxµyu−
ν

2
(µyδx(Mxp+ u) + µxδy(Myu))) (3.78)

V(.) = µ(..)(µxµyv −
ν

2
(µyδx(Mxv) + µxδy(Myp+ v))) (3.79)

(.) = 1 or 2 (3.80)

(..) = x or y (3.81)

Note that r′u and r′v are exactly the half-step u and v velocities computed at the

vertices based on cell values derived by Morton and Roe [73]. In order to remove

spurious vorticity due to pressure terms, we have similar requirements as before in

the pure acoustic problem i.e,

P = µyr
′ (3.82)

Q = µxr
′ (3.83)
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where

r′ = µxµyp−
ν

2
(µyδx(Mxp+ u) + µxδy(Myp+ v)) (3.84)

Inserting the values of P,Q,U1, U2, V1, V2 into the vorticity evolution equation, we

have

ωn+1 − ωn = ν[δxδy(µxP − µyQ) − δxMx(µyδxµyr
′

v − µxδyµyr
′

u) − δyMy(µyδxµxr
′

v − µxδyµxr
′

u)]

= −ν(Mxµyδx +Myµxδy)[µyδxr
′

v − µxδyr
′

u] (3.85)

This implies that numerical vorticity evolution is dependent only on the half-step

velocities. This is consistent with the inviscid vorticity transport equation in two

dimensions where vorticity is purely advected if there are no baroclinic effects. Our

results imply that any form of limiting on the half-step pressure will not create

spurious vorticity for the Rotated Richtmyer scheme. However this is not true for

half-step velocities where some restrictions are required. We will determine what are

the restrictions next.

3.2.2 Preserving Vorticity With Limiters

We can introduce limiters by directly limiting the gradient of the fluxes in the

linear wave equations. Another interpretation of this would be to limit the flux

components by varying the Courant numbers that are multiplied to each component

of the flux-gradients. We shall see that there are severe restrictions for the flux

components when we insist on preserving vorticity. Recall that we want to preserve

vorticity at the vertices. We can write its evolution equation as

ωn+1 − ωn = −νQ̃ω′

(3.86)

where

Q̃ = [Mxµyδx +Myµxδy] (3.87)
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is the advection operator and

ω
′

= µyδxv
′ + µxδyu

′ (3.88)

is the cell vorticity based on vertex velocities. We want the numerical vorticity evo-

lution equation to be consistent with its analytical transport equation. Assuming

constant advection with zero pressure gradients, the two-dimensional vorticity trans-

port equation is

∂ω

∂t
+Mx

∂ω

∂x
+My

∂ω

∂y
= 0 (3.89)

Morton and Roe [73] have shown two things about the Rotated Richtmyer scheme

when solving the system of linear wave equations. One, the initial vorticity distribu-

tion is preserved if we have pure acoustic equations and it obeys the discrete vorticity

transport equation when the flow advection is constant. Two, there are no incon-

sistencies between the vorticity predicted by its transport equation and vorticity

deduced from the velocities.

We would like to include limiting and by doing so, we will see that the scheme

does not preserve vorticity even for irrotational flow. Irrotationality implies that our

numerical vorticity evolution is

ωn = 0 (3.90)

for all times. Since vorticity is a scalar quantity in two dimensions, equation (3.86)

reduces to

ω
′

= 0 (3.91)

This imposes a restriction for the half-step velocities located at the vertices. These
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velocities are computed from cell quantities and written as

u′ = µxµyu− νQ̃Q̃u− νPµyδxp (3.92)

v′ = µxµyv − νQ̃Q̃v − νPµxδyp (3.93)

where we have defined Courant numbers with respect to advection νQ̃ and pressure

νP components. Thus

ω
′

= µxµy(µyδxv − µxδyu)

− 1

2
[µyδx(νQ̃Q̃v) − µxδy(νQ̃Q̃u)

+ µyδx(νPµxδyp) − µxδy(νPµyδxp)] (3.94)

The first line of this equation is the initial vorticity and is zero for discretely irrota-

tional flow. The second line is the discrete advection component which may contain

spurious vorticity. The last line corresponds to spurious vorticity due to pressure gra-

dients denoted by ω
′

P . Before we hypothesize any restrictions to preserve vorticity,

we will introduce product rules for the operators 10.

µx(ab) = µx(a)µx(b) +
1

4
δx(a)δx(b) (3.95)

µy(ab) = µy(a)µy(b) +
1

4
δy(a)δy(b) (3.96)

δx(ab) = µx(a)δx(b) + µx(b)δx(a) (3.97)

δy(ab) = µy(a)δy(b) + µy(b)δy(a) (3.98)

Hence contributions of spurious vorticity from pressure gradients (last line of equation

10These can be proven by direct computatations.
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3.94) become

ω
′

P = µyδx(νPµxδyp) + µxδy(νPµyδxp)

= µy[µxνP δx(µxδxp) + µx(µxδyp)δxνP ] − µx[µyνP δy(µyδxp) + µy(µyδxp)δyνP ]

= (µyµxνP )(µxµyδxδyp) +
1

4
(µxδyνP )(µxδxδ

2
yp) + (µ2

xµyδyp)(µyδxνP ) +
1

4
(µ2

xδ
2
yp)(δxδyνP )

− (µyµxνP )(µxµyδxδyp) −
1

4
(µyδxνP )(µyδ

2
xδyp) − (µxµ

2
yδxp)(µxδyνP ) − 1

4
(µ2

yδ
2
xp)(δxδyνP )

=
1

4
(δxδyνP )(µ2

xδ
2
y − µ2

yδ
2
x)p+ (µyδxνP )(µ2

xµyδy −
1

4
µyδ

2
xδy)p

− (µxδyνP )(µxµ
2
yδx −

1

4
µxδxδ

2
y)p

Using the identities

δ2
x = 4(µ2

x − 1), δ2
y = 4(µ2

y − 1) (3.99)

we get

ω
′

P = (δxδyνP )[µ2
x(µ

2
y − 1) − µ2

y(µ
2
x − 1)]p

+ (µyδxνP )[µ2
xµyδy − (µ2

x − 1)(µyδy)]p

− (µxδyνP )[µxµ
2
yδx − (µ2

y − 1)(µxδx)]p

Appealing to the product rules again we have

ω
′

P = δy(µypδxνP ) − δx(µxpδyνP ) (3.100)

Lemma 2 ω
′

P = 0 ⇔ νP = k at each vertex, where k is a constant.

Proof ⇒

Assume ω
′

P = 0 everywhere in a discretized computational domain D ∈ [-0.25,0.25]

x [-0.25,0.25]. Define a subset of the domain Ds as cells and vertices as shown in Fig
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Figure 3.6: Domain D with subdomain bounded by vertex 1,2,3 and 4 defined by
Ds. To preserve vorticity at cell O, all ν must be identical at vertices
surrounding the cell.

(3.6). Define a non-trivial pressure p = cos(πx)cos(πy) and its discretized form in

Ds and assume non-identical νP . But in Ds

ω
′

P = (pO + pN)(ν1 − ν2) − (pO + pS)(ν4 − ν3) − (pO + pE)(ν1 − ν4) + (pO + pW )(ν2 − ν3)

= 0

only if ν1 = ν2 = ν3 = ν4 which is a contradiction.

Proof ⇐

If ν1 = ν2 = ν3 = ν4, hence

ω
′

P = (ν4 − ν1)pE + (ν1 − ν2)pN + (ν2 − ν3)pW + (ν3 − ν4)pS

= 0

Corollary 2 It is a necessary condition to have νP identical at each vertex for the

Rotated Richtmyer scheme to be vorticity preserving.

Now we shall look at the effects of advection located in the second line of equation
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(3.94). By applying product rules we have

ω
′

Q̃
= µyδx(νQ̃Q̃v) − µxδy(νQ̃Q̃u)

= µx[(µyνQ̃)(δyQ̃u) + (µyQ̃u)(δyνQ̃)] − µy[(µxνQ̃)(δxQ̃v) + (µxQ̃v)(δxνQ̃)]

= (µxµyνQ̃)(µxδyQ̃u) +
1

4
(µyδxνQ̃)(δxδyQ̃u) + (µxµyQ̃u)(µxδyνQ̃) +

1

4
(µyδxQ̃u)(δxδyνQ̃)

− (µxµyνQ̃)(µyδxQ̃v) +
1

4
(µxδyνQ̃)(δxδyQ̃v) − (µxµyQ̃u)(µyδxνQ̃) +

1

4
(µxδyQ̃v)(δxδyνQ̃)

After simplifying we get

ω
′

Q̃
= (µxµyνQ̃)Q̃(µxδyu− µyδxv)

+
1

4
(δxδyνQ̃)Q̃(µxδyu− µyδxv)

+ (µxδyνQ̃)Q̃(µxµyv −
1

4
δxδyv) − (µyδxνQ̃)Q̃(µxµyu−

1

4
δxδyu) (3.101)

Appealing to irrotationality of the data, ω
′

Q̃
reduces to

ω
′

Q̃
= (µxδyνQ̃)Q̃(µxµyv −

1

4
δxδyv) − (µyδxνQ̃)Q̃(µxµyu−

1

4
δxδyu) (3.102)

We are ready to claim another Lemma.

Lemma 3 ω
′

Q̃
= 0 ⇔ νQ̃ = k at each vertex, where k is a constant.

The proof is included in appendix G.

Corollary 3 It is also a necessary condition to have νQ̃ identical at each vertex for

the Rotated Richtmyer scheme to be vorticity preserving.

We have explained earlier in this section that we could introduce limiting locally

if we vary the Courant number locally. From our analytical results it is clear that

unless any limiter used is global, the Rotated Richtmyer scheme will not be vorticity

preserving when solving the system of linear wave equations. The only global choice

that gives second order accuracy is νQ̃ = ν, which is not monotone.
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This is not surprising since the Rotated Richtmyer scheme is designed using a

specific linear averaging such that it will preserve vorticity for linear wave equations,

hence may not preserve vorticity when nonlinearity is included. The scheme is also

designed to preserve vorticty from a local standpoint but since it does not preserve

vorticity for nonlinear settings, we will have to give up this local property and settle

for a global mechanism. This will be the subject of the next section.

3.3 Introducing a Vorticity Correction Algorithm

We have learnt that the Rotated Richtmyer scheme is not vorticity preserving

unless global limiters are used to limit the fluxes that govern cell velocities. We

therefore abandon any analogy with constrained transport, and turn to a correction

method. We implement this similarly to Brandt’s two-step method [15] for solving

incompressible flow problems where in one of the steps, zero velocity divergence is

enforced without altering the curl of velocities. Here we want to bring about some

required curl of velocity without altering velocity divergence. We will perform the

vorticity correction as follows. Let

∆ω = ωIND − (µyδxv − µxδyu) (3.103)

be defined as the vertex vorticity discrepancy where ωIND is an independent estimate

of vorticity. For the linear wave equations, this would be the initial vorticity. If

we have spurious clockwise vorticity at a vertex, a counter-clockwise correction is

performed by altering the surrounding cell velocities and vice-versa. Note that each

cell velocity is dependant on its 4 neighboring vertices. We will perform corrections

on the cell velocities as (see Fig 3.7)
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2 1

cell−center

y

x

Figure 3.7: Vorticity correction by changing cell velocities. Assume we have a clock-
wise spurious vorticity ∆ω at a vertex, we introduce a counter-clockwise
correctional vorticity. Although this leads to solving an a Poisson prob-
lem but it ensures vorticity is preserved locally.

u1 → u1 − k∆ω v1 → v1 + k∆ω

u2 → u2 − k∆ω v2 → v2 − k∆ω

u3 → u3 + k∆ω v3 → v3 − k∆ω

u4 → u4 + k∆ω v4 → v4 + k∆ω

where k is a nonzero constant. This correction does not alter the estimated divergence

of the flow, divu = µyδxu + µxδyv, but it will change the velocity at neighboring

vertices, and we need to iterate to convergence. This makes the method global. By

including four neighboring vertices, the velocity corrections can be written as

u→ u− kµxδy∆ω

v → v + kµyδx∆ω (3.104)

We want to include the vorticity correction as a part of updating the full step and

this has to be done in a conservative manner. One way to do this is to modify the

edge (or cell interface) values before updating the full step. Let the discrete linear
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wave equation operator be defined as

Tδ =















Mxµyδx +Myµxδy µyδx µxδy

µyδx Mxµyδx +Myµxδy 0

µxδy 0 Mxµyδx +Myµxδy















(3.105)

so that the modified full step will be

un+1 = un − νTδu
′

+
∆t

h
(δxCx + δyCy) (3.106)

where the correctional vectors in the x and y-directions are defined as

Cx = [0, 0, cx]
T

Cy = [0, cy, 0]T (3.107)

To preserve vorticity, we alter the x-velocity by a small correction in the y-direction

cy and likewise the y-momentum by cx in the x-direction. Taking the discrete curl

of the full step, we get a relation between the corrected and uncorrected vorticities

given by

ω̃n+1 = ωn+1 +
∆t

h2
[µyδ

2
xcx − µxδ

2
ycy]

n (3.108)

We insist that the corrected vorticity is identical to some independent estimate of

vorticity

ω̃n+1 = ωn+1
IND (3.109)

and to achieve this we will use subiterations within the timestep. Although this inde-

pendent vorticity estimate is zero for irrotational flow, it will generally be nontrivial

and will serve as a numerical link to include physical vorticity information. Denote

conditions after the kth subiteration by ()k and conditions after the subiterations
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have converged by ()∞. The problem that we wish to solve is

ω∞ = ωn+1
IND = ωn+1 +

∆t

h2
[µyδ

2
xc

∞

x − µxδ
2
yc

∞

y ] (3.110)

where c∞x , c
∞

y are the corrections that need to be determined. The sub-iterations that

bring this about are

ωk+1 = ωk +
∆t

h2
[µyδ

2
x(c

k+1
x − ckx) − µxδ

2
y(c

k+1
y − cky)] (3.111)

where we assume ωn+1 as the initial values for the subiterations. The particular

choices

ck+1
x − ckx = ζµy(ω

k − ωn+1
IND)

ck+1
y − cky = −ζµx(ω

k − ωn+1
IND) (3.112)

with ζ as a parameter that restricts the relaxation factor will lead to the discrete

Laplacian operator

ωk+1 = ωk + κ[µ2
yδ

2
x(ω

k − ωn+1
IND) + µ2

xδ
2
y(ω

k − ωn+1
IND)] (3.113)

where κ = ζ∆t
h2 is the relaxation. Define vorticity discrepancy as

∆ωk = ωk − ωn+1
IND (3.114)

so that

∆ωk+1 = ∆ωk + κ[µ2
yδ

2
x + µ2

xδ
2
y ]∆ω

k (3.115)

which is a relaxation for ∆ω. Clearly this problem has no intrinsic interest because

its steady solution is identically zero. It is however, the mechanism by which cx and

cx are generated in equation (3.110).

Note that this discrete Laplacian of the vorticity uses a bad stencil, the rotated

µ2
yδ

2
x + µ2

xδ
2
y rather than the standard five point δ2

x + δ2
y . This introduces odd-even
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decoupling into the vorticity, but when this is averaged to give cx and cx the spurious

mode disappears.

3.4 The Modified Rotated Richtmyer Scheme

Assume we perform the same method of limiting for the half-step described in

section 3.2 and at the same time, we also include discrete advection. Let

T lim
δ =















Mxµyδ
lim
x +Myµxδ

lim
y µyδ

lim
x µxδ

lim
y

µyδ
lim
x Mxµyδ

lim
x +Myµxδ

lim
y 0

µxδ
lim
y 0 Mxµyδ

lim
x +Myµxδ

lim
y















(3.116)

be a limited discrete version of equation (3.26) where µyδ
lim
x and µyδ

lim
x are the

limited compact differencing providing limited slopes of vertex variables. Then the

limited half-step Rotated Richtmyer scheme will be

u
′

= [µxµyI −
ν

2
T lim

δ ]un (3.117)

providing temporal solution at the vertices. The modified full step is then

un+1 = un − νTδu
′

+
∆t

h
(δxCx + δyCy) (3.118)

where the correctional vectors are defined in the previous section. The overall algo-

rithm is independent of the scheme employed and can be summed as below.

• Compute the wave equations using the limited Rotated Richtmyer scheme or

any other ’good’11 scheme. Solve for the provisional vorticity ωn+1 and

1. Compute initial vorticity discrepancy, ∆ω0 = ωn+1 −ωn+1
IND at each vertex

with initial cx = cy = 0 and ω0 = ωn+1.

11We certainly do not want the pure central scheme because it is an unstable scheme.
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2. Solve the Poisson equation for ∆ωk+1 using a relaxation scheme with

∆Ω = 0 at the boundaries for one sub-iteration step.

3. Perform correction on cx and cy at each cell-interface based on the updated

values ∆ωk+1 using equation (3.110).

4. Compute the updated vorticity discrepancy, if ∆ωk+1 < error tolerance,

stop the iteration and compute the overall fluxes at each interface and

update the full step. Else go back to step 2.

• Compute compact vorticity at time n+1. To compute the next time-level, start

again with the new solution as data.

Since we only deal with irrotational flow in this chapter, we set ωn+1
IND = 0.

3.5 Numerical Results

Define a two dimensional computational domain as D ∈ [-2.0,2.0] x [-2.0,2.0] with

the following initial value problem.

p = −
√

2sin(
π

2
x)sin(

π

2
y) (3.119)

u = 0.0 (3.120)

v = 0.0 (3.121)

We will include a uniform constant advection with |M | =
√

2 at an angle of 45

degrees (counter-clockwise) relative to the x-axis. We have chosen a Courant number

ν = 0.5 and imposed a periodic boundary conditions. Our objective is to predict

time-accurate solutions of the linear wave equations with constant advection. This is

a problem where there will be linear interactions between the pressure and velocity

but nevertheless, the solution should remain irrotational for all times.
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We have included results for three schemes: the pure Rotated-Richtmyer scheme

(RR), the Rotated-Richtmyer scheme with Superbee limiter (RR-S) and the Modified

Rotated-Ritchmyer scheme with Superbee limiter (RR-S-VP). The results are shown

in Fig. 3.8-3.43. In short, all the three schemes produce almost identical pressure

and velocity results12. However, only the RR and RR-S-VP schemes preserve irrota-

tionality. When applying the Superbee limiter13, the Rotated-Richtmyer scheme no

longer preserves vorticity (Figs. 3.18, 3.36). This is consistent with our theoretical

results in section 3.2.2. By including the vorticity correctional algorithm, we are

able to remove the spurious vorticity (Figs. 3.24, 3.42) and preserve irrotationality

to O(10−8)14.

Moreover, the vorticity correctional algorithm does not alter the velocity diver-

gence15 (Table 3.1-3.4). This is also consistent with our condition that when the

velocity curl is modified, the velocity divergence should remain unchanged. Also,

note that for the RR-S scheme, the production of spurious vorticity grows with time,

which makes its time-accurate vorticity solution to be unreliable.

Scheme RR RR-S RR-S-VP
curl-u 1.5359e-16 4.6871e-5 9.3451e-9
div-u -2.7912e-19 8.8878e-18 4.3214e-18

Table 3.1: L2-Norms of the three schemes at T=1.

As mentioned before, for this chapter it was sufficient to set ωn+1
IND = 0. However,

12Our objective is not to show accurate predictions of pressure and velocity but to provide
a numerical example to demonstrate that the RR-S scheme is not vorticity preserving unless a
vorticity correctional algorithm is included.

13Or any limiter when solving the linear wave equations with constant advection.

14This is the prescribed vorticity error tolerance. We can prescribe a smaller error tolerance but
this comes with the price of more sub-iterations required per time step.

15We have also defined a compact velocity divergence, located at the vertices.
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Scheme RR RR-S RR-S-VP
curl-u 2.3842e-16 2.1071e-4 8.7254e-9
div-u -9.2378e-18 6.9085e-18 5.2131e-18

Table 3.2: L2-Norms of the three schemes at T=5.

Scheme RR RR-S RR-S-VP
curl-u 2.3842e-16 5.0231e-4 8.2734e-9
div-u -9.2378e-18 6.9085e-18 5.2131e-18

Table 3.3: L2-Norms of the three schemes at T=10.

Scheme RR RR-S RR-S-VP
curl-u 2.3423e-16 9.0234e-2 8.8231e-9
div-u -7.8654e-18 -5.5512e-18 5.6678e-18

Table 3.4: L2-Norms of the three schemes at T=100.

we can extend the idea to a general vortical flow by incorporating the discretized vor-

ticitity transport equations which is necessary for computing general vortical flows.

In addition, although the modified Rotated Richtmyer scheme is monotonicity and

vorticity preserving, it does not have upwinding which is vital in computing super-

sonic flows. The idea of including information from the discrete vorticity transport

equation and upwinding will be presented and discussed in the next chapter.
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Figure 3.8: Pressure contours (RR
scheme) at T=1.
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Figure 3.9: 3D View.
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Figure 3.10: U-velocity contours (RR
scheme) at T=1.
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Figure 3.11: 3D View.
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Figure 3.12: Vorticity contours (RR
scheme) at T=1.
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Figure 3.13: 3D View. Note irrotation-
ality.
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Figure 3.14: Pressure contours (RR-S
scheme) at T=1.
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Figure 3.15: 3D View.
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Figure 3.16: U-velocity contours (RR-S
scheme) at T=1.
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Figure 3.17: 3D View.
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Figure 3.18: Vorticity contours (RR-S
scheme) at T=1.
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Figure 3.19: 3D View. Note generation
of spurious vorticity when a
limiter is applied.
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Figure 3.20: Pressure contours (RR-S-
VP scheme) at T=1.
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Figure 3.21: 3D View.
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Figure 3.22: U-velocity contours (RR-S-
VP scheme) at T=1.
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Figure 3.23: 3D View.
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Figure 3.24: Vorticity contours (RR-S-
VP scheme) at T=1.
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Figure 3.25: 3D View. Note with the
flux-correction, irrotation-
ality is preserved.



92

XCoord

Y
C

oo
rd

-1 0 1

-1

0

1

Figure 3.26: Pressure contours (RR
scheme) at T=100.
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Figure 3.27: 3D View.
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Figure 3.28: U-velocity contours (RR
scheme) at T=100.
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Figure 3.29: 3D View.
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Figure 3.30: Vorticity contours (RR
scheme) at T=1.
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Figure 3.31: 3D View. Irrotationality is
maintained.
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Figure 3.32: Pressure contours (RR-S
scheme) at T=100.
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Figure 3.33: 3D View.
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Figure 3.34: U-velocity contours (RR-S
scheme) at T=100.
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Figure 3.35: 3D View.
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Figure 3.36: Spurious Vorticity contours
(RR-S scheme) at T=100.
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Figure 3.37: 3D View. We have spurious
vorticity of O(0.01).
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Figure 3.38: Pressure contours (RR-S-
VP scheme) at T=100.
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Figure 3.39: 3D View.
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Figure 3.40: U-velocity contours (RR-S-
VP scheme) at T=100.
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Figure 3.41: 3D View.
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Figure 3.42: Vorticity contours (RR-S-
VP scheme) at T=100.
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Figure 3.43: Note with flux-corrections,
we have preserved vorticity
even after T=100.



CHAPTER IV

VORTICITY CONTROL IN EULER

EQUATIONS

Finite volume schemes based on Riemann solvers are the most popular and prac-

tical methods in solving compressible fluid dynamic problems. These schemes are

conservative and upwinded based on wave characteristics hence have the strongest

physical basis for modelling the fluid1. They are also relatively cheap, robust and

easily extended to multi dimensions. However, finite volume schemes based on one-

dimensional Riemann solvers cannot be vorticity preserving2 [73].

Based on what we have learnt from the previous chapter, we will introduce a

method that modifies the numerical fluxes of the momentum equations to capture

vorticity to within an error tolerance. Strictly, it is the curl of the momentum that

is captured, because that objective makes it easier to retain conservation in the

conventional sense and since we merely want to control some aspect of rotational

flow. Because there seems to be no generally-accepted term for this quantity, we

frequently refer to it loosely as ‘vorticity’; when we need to stress the distinction we

1However, this does not mean that the Roe-flux is perfect. We have witnessed in chapter 2 how
the flux suffers from instabilities in a perturbed stationary shock problem.

2Refer to footnote in page 67.

95



96

call it ‘pseudo-vorticity’. The method can be used with any good flux function but

we want to use a flux function which has the least numerical dissipation hence Roe’s

flux solver [86] fits well. In short, the algorithm utilizes a conventional Roe solver

with extra terms to remove spurious vorticity. It is assumed that an independent,

and more accurate prediction of vorticity is available, that is obtained from a solution

of the vorticity transport equation. Because the underlying scheme is consistent with

the Euler equations, the vorticity that it predicts must be, at each time step, close

to the true vorticity, and so the corrections that are made must be small. They

preserve the formal accuracy of the basic scheme, but prevent the small errors from

accumulating into major discrepancies.

The numerical fluxes for the momentum equations are conservatively augmented

by small artificial terms before each full step. These terms are obtained by solving

a Poisson problem, driven by the discrepancy between the vorticity that would be

predicted without any correction, and the vorticity obtained independently from the

(pseudo) vorticity transport equation. The Hancock scheme3 [110], [97] is chosen

for time-integration although the algorithm could be utilized with any other time

integration method4.

To demonstrate the concept we will utilize a finite volume scheme with Roe-flux

differencing[85] on a uniform two-dimensional Cartesian grid. All the conservative

and primitive variables are stored in the cell center except for pseudo-vorticity which

is defined from the cell quantities as

Ω = Lωu =
1

h
[µyδx(ρv) − µxδy(ρu)] (4.1)

3This scheme in included in appendix B

4An example would be a Runge-Kutta method.
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and therefore located at the cell vertex (Fig 4.1). Before we begin with the vorticity

control analysis, recall that the two-dimensional Euler equations can be written as

∂tu + ∂xf(u) + ∂yg(u) = 0 (4.2)

where u = u(x, y, t), f(u),g(u) are the conservative variables and the corresponding

fluxes defined as

u = [ρ, ρu, ρv, ρE]T (4.3)

f(u) = [ρu, ρu2 + p, ρuv, ρuH]T (4.4)

g(u) = [ρv, ρuv, ρv2 + p, ρvH]T (4.5)

from the fluid density ρ, velocity in x and y-direction u and v, the total energy

E = e + u2+v2

2
and the total enthalpy H = E + p

ρ
. The pressure is determined from

the equation of state, e = p(γ−1)
ρ

which is assumed to be with an ideal gas constant

γ. We also define the non-conservative (or primitive) variables as w = [ρ, u, v, p]T .

Our analysis is presented in two dimensions as a foundation to extend to three

dimensions. We will start with controlling vorticity in the numerical flux, introducing

correctional vectors. Then, we will derive the general vorticity transport equations

for inviscid compressible flow. This is followed by discretizing the vorticity transport

equations and the overall vorticity capturing algorithm. We will simulate a travelling

vortex as a numerical example to illustrate the superiority of the vorticity capturing

schemes as compared to conventional finite volume schemes. Finally, we will attempt

to cure the 1 1/2 dimensional carbuncle problem.



98

y

x

Cells

Vertices

Edges

u,w

C

C

x

y

h

h

Ω, ∆Ω

Figure 4.1: Grid Representation

4.1 A New Flux Function That Controls Curl of Momentum
in Two Dimensions

We intend to alter only the momentum equations since vorticity is hidden in them

and leave the mass and energy equations untouched. This is done by adding variable

coefficients (or flux corrections) Cx and Cy to the numerical fluxes of the momentum

equations. Since the order of magnitude of spurious vorticity is smaller than the

scheme’s order of accuracy, we will introduce small corrections to the momentum

equations.

To preserve vorticity, we proceed by analogy with section 3.3, by altering the x-

momentum by a small correction in the y-direction cx and likewise the y-momentum

by cy in the x-direction. Our modified flux functions at the interface will have the

following form.

f̃I = f(uL,uR) − Cx (4.6)

g̃I = g(uB,uT ) − Cy (4.7)
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and we will choose (f ,g) = (fRoe,gRoe) as the numerical flux function5 in which the

original Roe flux in the x and y directions [85] which can be obtained in appendix D

. Note that we have introduced the interface flux corrections Cx and Cy only to the

momentum equations given by

Cx = [0, 0, cx, 0]T

Cy = [0, cy, 0, 0]T (4.8)

Hence we shall discretize the two-dimensional Euler equations using the standard

and modified fluxes i.e.

un+1
i,j = un

i,j −
∆t

h
[fn

i+ 1

2
,j
− fn

i− 1

2
,j

+ gn
i,j+ 1

2

− gn
i,j− 1

2

] (4.9)

ũn+1
i,j = ũn

i,j −
∆t

h
[f̃n

i+ 1

2
,j
− f̃n

i− 1

2
,j

+ g̃n
i,j+ 1

2

− g̃n
i,j− 1

2

] (4.10)

where un
i,j and ũn

i,j are the standard and modified cell averages of the conservative

variables at coordinate (i,j) and time level n. We define pseudo-vorticity Ω at a

vertex through the compact difference of four neighboring cell-center momenta (ρ~u)

that surround the vertex, as in (4.1).

Controlling this particular discretization of the vorticity allows the checkerboard

mode of the momenta in the cells, although not in the fluxes. There are other ways to

define discrete vorticity using larger stencils but these come with even more spurious

modes [73]. We will follow the same analysis in previous chapter except that now we

want to control vorticity based on curl of momentum Ω instead of curl of velocity ω.

We begin by defining the relations of corrected and uncorrected vorticities

Ω̃n+1 = Ωn+1 +
∆t

h2
[µyδ

2
xcx − µxδ

2
ycy]

n (4.11)

5Any other ’good’ flux function can also be used.
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We will insist that the corrected vorticity is identical to some independent estimate

that will be discussed in the following section,

Ω̃n+1 = Ωn+1
IND (4.12)

and to achieve this we will use subiterations within the timestep. Denote conditions

after the kth subiteration by ()k and conditions after the subiterations have converged

by ()∞. The problem that we wish to solve is

Ω∞ = Ωn+1
IND = Ωn+1 +

∆t

h2
[µyδ

2
xc

∞

x − µxδ
2
yc

∞

y ] (4.13)

where c∞x , c
∞

y are the corrections that need to be determined. The sub-iterations that

bring this about are

Ωk+1 = Ωk +
∆t

h2
[µyδ

2
x(c

k+1
x − ckx) − µxδ

2
y(c

k+1
y − cky)] (4.14)

where we assume Ωn+1 as the initial values for the subiterations. The particular

choices

ck+1
x − ckx = ζµy(Ω

k − Ωn+1
IND)

ck+1
y − cky = −ζµx(Ω

k − Ωn+1
IND) (4.15)

with ζ as a parameter that restricts the relaxation factor will lead to the discrete

Laplacian operator

Ωk+1 = Ωk + κ[µ2
yδ

2
x(Ω

k − Ωn+1
IND) + µ2

xδ
2
y(Ω

k − Ωn+1
IND)] (4.16)

where κ = ζ∆t
h2 is the relaxation. Define vorticity discrepancy as

∆Ωk = Ωk − Ωn+1
IND (4.17)

so that

∆Ωk+1 = ∆Ωk + κ[µ2
yδ

2
x + µ2

xδ
2
y ]∆Ωk (4.18)



101

vertex

cell−center

43

2 1

y

x

Figure 4.2: Removing spurious vorticity with flux-correction. Assume we have a
clockwise spurious vorticity ∆Ωn+1 at a vertex, we introduce a counter-
clockwise correction altering the momenta. Note that this correction
does not change the discrete divergence of momentum within the vertex
control volume.

which is a relaxation for ∆Ω. This problem will be the mechanism by which cx and

cx are generated in equation (4.15). Note that incorporating these flux corrections

maintains conservation of momentum, but redistributes it so as to be compatible

with the independent vorticity calculation.

4.2 Independent Estimate of Inviscid Vorticity

We shall derive an integral form of the inviscid vorticity transport equations by

taking the curl of the momentum equations. For an arbitrary control volume dV

with surface S, the inviscid momentum equations can be written in the following

form

∂

∂t

∫∫∫

V

ρ~UdV +

∮

S

(ρ~U · ~dS)~U +

∮

S

P ~dS = 0 (4.19)
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Appealing to the Divergence Theorem, we can rewrite the last two terms as

∮

S

(ρ~U · ~dS)~U =

∫∫∫

V

∇ · (ρ~U ~U)dV (4.20)

∮

S

P ~dS =

∫∫∫

V

∇PdV (4.21)

We define vorticity as ~Ω = ∇×ρ~U , and applying the curl operator on the momentum

equations we get

∂

∂t

∫∫∫

V

~ΩdV +

∫∫∫

V

∇× [∇ · (ρ~U ~U)]dV = 0 (4.22)

since the ∇×∇ operator is zero. Recall that the dyadic tensor is defined as

~U ~U = ~U ◦ ~U =















u2 uv uw

vu v2 vw

wu wv w2















Note that ρ~U ◦ ~U = ~U ◦ ρ~U . Also, recall the following vector identities.

∇ · ( ~A ◦ ~B) = ~B ◦ ∇ ~A+ ~A(∇ · ~B) (4.23)

~A×∇× ~B =
1

2
∇( ~A · ~B) − ~B ◦ ∇ ~A (4.24)

∇× ~A× ~B = ~A∇ · ~B − ~B∇ · ~A+ ( ~B · ∇) ~A− ( ~A · ∇) ~B (4.25)

Using the first identity we expand the divergence term as

∇ · (~U ◦ ~ρU) = ρ~U ◦ ∇~U + ~U(∇ · ~ρU) (4.26)

Using the second vector identity we write the first term of the previous equation as

ρ~U ◦ ∇~U =
1

2
∇(~U · ρ~U) − ~U ×∇× ~ρU (4.27)
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The curl of this equation is

∇× [~U ◦ ∇ρ~U ] = ∇× [
1

2
∇( ~ρU · ~U)] −∇× [~U ×∇× ~ρU ]

= −∇× [~U × ~Ω]

= (~U · ∇)~Ω + ~Ω∇ · ~U − (~Ω · ∇)~U

= ∇ · (~Ω ◦ ~U) − (~Ω · ∇)~U (4.28)

after using the third vector identity and that ∇·∇× is trivial. All together, the curl

of momentum for an arbitrary control volume V can be written as

∫∫∫

V

[
∂~Ω

∂t
+ ∇ · (~Ω ◦ ~U) − (~Ω · ∇)~U + ∇× [~U(Φ)]]dV = 0 (4.29)

The first three terms correspond to unsteady vorticity, vorticity advection and vortex

stretching. The last term represents compressibility effects. Note for incompressible

flow, we can rewrite the equation as

∫∫∫

V

[
∂~ω

∂t
+ ∇ · (~ω ◦ ~U) − (~ω · ∇)~U ]dV = 0 (4.30)

recovering the conventional inviscid vorticity transport equations given in [8].

4.2.1 Two-Dimensional Case

In two-dimensions, ~Ω = [0, 0,Ωz]
T hence the vortex stretching term drops out

and

∇ · (~Ω ◦ ~U) =
∂(uΩz)

∂x
+
∂(vΩz)

∂y
(4.31)

∇× [~U(Φ)] =
∂(vΦ)

∂x
− ∂(uΦ)

∂y
(4.32)

Define normal velocity vectors ~Un = [v,−u]T thus vorticity transport equation be-

comes

∫∫

S

[
∂Ωz

∂t
+ ∇ · (~UΩz + ~UnΦ)]dS = 0 (4.33)
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This equation is in conservation form 6. Applying the Divergence Theorem we get

∫∫

S

∂Ωz

∂t
dS +

∮

l

(~UΩz + ~UnΦ) · ~dl = 0 (4.34)

where S is an arbitrary area closed by a line l. For brevity, we will assume from now

on that Ωz = Ω. In three dimensions, conservation form is lost due to the stretching

term.

4.3 An Independent Discrete Vorticity Estimate in Two Di-
mensions

4.3.1 First Order Method

Discrete conservation is ensured by drawing a control volume around the point of

interest (in this case it is the vertex) and perform the update as an integral around

the control volume. Appealing to a uniform Cartesian grid, with fluxes F, G in the

(x,y)-directions, respectively, the vorticity at the vertices are discretized as

h2[Ωn+1 − Ωn] + h∆t[δxf∗ + δyg∗] = 0 (4.35)

where f∗, g∗ are numerical fluxes evaluated from some formula to be determined.

We shall employ the staggered grid formulation defined in Fig. 4.3. The primitive

variables are located in the cell-center but vorticity is located at the vertices. We need

the velocities (both normal and tangential velocities) at the interface of the control

volume that defines vorticity. We have the primitive values at the cell-centers which

encloses the control volume of vorticity. At any interface, the primitive values are

the average of two primitive cell-centered values. In two dimensions there are two

terms in the equation for vorticity evolution: the gradients of pseudo-vorticity and

6This does not mean that pseudo-vorticity is a conserved quantity, unless it also obeys suitable
jump conditions
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momentum divergence. We chose to treat the former as an advection term to be

upwinded. The latter is discretized using a central scheme since it is a divergence of

a gradient quantity and is diffusion-like. We will evaluate the interface fluxes as the

following.

f∗ = [ufup(ΩL,ΩR) + v
1

2
((Φ)L + (Φ)R)] (4.36)

g∗ = [vfup(ΩB,ΩT ) − u
1

2
((Φ)B + (Φ)T )] (4.37)

where u, v indicate interface velocities and Φ is the momentum divergence located

at the vertices evaluated via compact divergence utilizing cell-centered velocities.

Φ =
1

h
[µyδx(ρu) + µxδy(ρv)] (4.38)

The one-dimensional upwinded horizontal flux function is evaluated as

fup(ΩL,ΩR) = ΩL(u > 0) (4.39)

fup(ΩL,ΩR) = ΩR(u < 0) (4.40)

Note if the interface velocity is zero, the flux will be an average of the two states.

The vertical fluxes are evaluated by a similar process. With first order forward Euler

time integration method, the independent estimate for vorticity is updated as

Ωn+1
IND = Ωn

IND − ∆t

h
[δxf∗ + δyg∗] (4.41)

We combine this with the Hancock scheme and get the first order vorticity capturing

scheme (VC1).

4.3.2 Second Order Method

We will now construct a second order scheme for the vorticity transport equation.

The time-integration will be second order Runge-Kutta with advection components
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face is an averaged-differencing utilizing vertices [C,E] for interface (1,4);
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face (3,4). For vorticity advection, each interface is governed by pairs for
upwinding, also denoted as [C,E], [C,N], [C,W] and [C,S]. The interface
velocities are just the averaged of velocties at (1,4), (1,2), (2,3) and (3,4).

of the numerical fluxes being linearly reconstructed. To avoid spurious overshoots,

we will limit these fluxes. The divergence of momentum will still be discretized as

a central scheme. This will be a two-step scheme in which we have two options.

One option is to limit only the half-step and the other is where limiter is applied

to both half and full-steps (VC2). The slope limiting is based on one-dimensional

considerations hence any conventional one-dimensional limiter can be used, and we

have chosen the Superbee limiter. Since our grids are uniform, we can define the

limited slopes of vorticity in x and y-directions centered at the vertices as

δΩx
i,j = lim(Ωi,j − Ωi−1,j,Ωi+1,j − Ωi,j) (4.42)

δΩy
i,j = lim(Ωi,j − Ωi,j−1,Ωi,j+1 − Ωi,j) (4.43)
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To obtain second order spatial accuracy, we shall use these limited slopes to recon-

struct the left and right states of the cell-vertex scheme.

Ω̃L = ΩL +
1

2
δΩx

L (4.44)

Ω̃R = ΩR − 1

2
δΩx

R (4.45)

In the vertical direction, a similar method is used. These values will be used in

the upwinded function defined on the previous section thus the limited fluxes are

evaluated as

f̃∗ = [ufup(Ω̃L, Ω̃R) + v
1

2
((Φ)L + (Φ)R)] (4.46)

g̃∗ = [vfup(Ω̃B, Ω̃T ) − u
1

2
((Φ)B + (Φ)T )] (4.47)

The half and full-steps of the vorticity capturing scheme are written as

Ω
n+ 1

2

IND = Ωn
IND − ∆t

2h
[δxf̃n

∗
+ δyg̃n

∗
]

Ωn+1
IND = Ωn

IND − ∆t

h
[δxf

n+ 1

2

∗ + δyg
n+ 1

2

∗ ] (4.48)

where the full-step fluxes are identical to fluxes derived in the previous section.

For VC2 scheme, we also update the full-step with limited and linearly reconstructed

fluxes. This will be our second order vorticity capturing scheme.

4.4 Algorithm

There will be two distinct numerical processes, one solving the Euler equations

while the other solves the vorticity transport equation. The former is computed via

Hancock scheme with Superbee limiter while the latter will be evaluated using the

discretized scheme discussed in the previous section. Both will be coupled and run

concurrently with each other. The algorithm below describes the steps involved.



108

• Compute vorticity estimate at time level n+1 (Ωn+1
IND) using equation (4.48)

with variables at time n.

• Compute the Euler equations using Hancock scheme. Solve the conventional

one dimensional Riemann problem using a Roe-solver providing a provisional

solution, with provisional vorticity Ωn+1 and

1. Compute initial vorticity discrepancy, ∆Ω0 = Ωn+1−Ωn+1
IND at each vertex

with initial cx = cy = 0 and Ω0 = Ωn+1.

2. Solve the Poisson equation for ∆Ωk+1 using a relaxation scheme with

∆Ω = 0 at the boundaries for one sub-iteration step.

3. Perform correction on cx and cy at each cell-interface based on the updated

values ∆Ωk+1 using equation (4.15).

4. Compute the updated vorticity discrepancy, if ∆Ωk+1 < error tolerance,

stop the iteration and compute the overall fluxes at each interface and

update the conservative variables at time level n+1. Else go back to step

2.

• Compute other variables such as primitive variables and compact vorticity at

time n+1. To compute the next time-level, start again from the beginning.

4.5 Modelling Travelling Vortex

In general, vorticity is produced by both viscous and inviscid mechanisms. We

want to check whether its subsequent transport by an inviscid flow will be correct and

for the reasons explained in chapter 1, we will ignore the viscous part. For rotational

flow, we came up with a test problem that features vorticity advected in a square
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Figure 4.5: Exact Vorticity at T=180

domain with periodic boundary conditions. We will set Courant number ν = 0.45

with κ = 0.6. To solve the Poisson problem given by equation (4.18), we have

used the Gauss-Seidel method. The Gauss-Seidel method is not the most efficient

technique of solving the Poisson problem [113], [100]; utilizing a better relaxation

scheme such as multigrid [16] should speed up the method considerably.

4.5.1 Exact Solution

This is to simulate a simple vorticity advection problem that satisfies the Euler

equations with periodic boundary conditions. We derived a simple exact solution

by assuming steady flow with a Gaussian pressure disturbance. Then we found a

divergence-free velocity field satisfying ∂p
∂r

= ρ~U2

r
, and finally superposed a uniform

advection speed. The solution is

u = q cosα+ c1[y − yo − qt sinα] exp[−c2([x− xo − qt cosα]2 + [y − yo − qt sinα]2)]

v = q sinα− c1[x− xo − qt cosα] exp[−c2([x− xo − qt cosα]2 + [y − yo − qt sinα]2)]

P = Pb − 0.25ρ
c21
c2

(exp[−2c2([x− xo − qt cosα]2 + [y − yo − qt sinα]2)] − 1) (4.49)
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Figure 4.7: First order Hancock-Roe-
VC1 at T=180

where q, α and pb are the background flow velocity (q = 0.5), flow angle (α = 0)

and pressure (pb = 1.0) with perturbation coefficients (c1, c2) = (−0.04, 0.02). The

reference coordinates are chosen to be (xo, yo) = (−20, 0). For simplicity, we set

density to be a constant (ρ = 1.4). We could have utilized the isentropic relations

p
ργ = k but did not do so in this example.

4.5.2 Numerical Results

Our results demonstrate that the VC2 scheme is superior to any other schemes

(Fig 4.9) preserving enstrophy7 closest to the exact solution even after 450 time-steps.

The first order Hancock is the worst, diffusing 85 percent of enstrophy after over 400

time-steps (Fig. 4.10)8. The second order Hancock scheme with Superbee limiter

does not diffuse enstrophy due to its nature of steepening slopes when there is no

danger of overshoot. This works well with shocks, however, for this case the steep-

7Enstrophy is defined as the dot product of vorticity with itself.

8Note that the enstrophy plot is normalized to unity, representing the enstrophy of the exact
solution in which other schemes are compared to.
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Figure 4.9: Second order Hancock-Roe-
Superbee-VC2 at T=180

ening generates spurious enstrophy (approximately 20 percent after 400 timesteps)

with time.

The VC2 scheme also uses Superbee to limit its Euler and vorticity fluxes but it

only produces 2 percent of spurious enstrophy relative to the exact solution. This

is attributed to vorticity physics being incorporated to the scheme in addition to

conventional upwinding. The performance of the VC1 scheme lies in between the

first order upwind and the Superbee method. This is quite unsurprising since vor-

ticity accuracy depends strongly on the discretization of its independent estimate.

When solving the vorticity transport equation, VC1 is only a first order method.This

contributes to excess diffusion of enstrophy. In addition, Fig (4.11) illustrates that

for this simple case, solving the Poisson equation with 50 or 2000 iterations yields

about 1 percent error for the VC2 scheme. For the record the VC2 scheme needs

about 50 sub-iterations per time step to achieve O(10−8) error tolerance. This can

be improved considerably if we use a more efficient Poisson solver like the multigrid.

It must be emphasized that the accuracy of the second order Hancock scheme is
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not compromised when the vorticity correctional algorithm is included (Fig 4.12). In

fact, the order of accuracy of predicting vorticity is twice more accurate for the VC2

scheme compared to the original Roe-flux (Fig 4.13).

In summary, we have established an accurate vorticity capturing method for

predicting unsteady rotational flow in two dimensions. Our next quest is to use this

vorticity capturing method in a much simpler vortical problem, that is to preserve

irrotationality for a steady 1 1/2 dimensional shock with a hope to eliminate the

carbuncle phenomenon. We will present the work in the next section.
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4.6 A New Method of Controlling the Carbuncle I: Control-
ling Vorticity

Our philosophy is to prevent the carbuncle without compromising profiles of con-

tact discontinuities and shear layers.Our first method deploys a first order Godunov

method with Roe’s solver that includes vorticity correctional step to remove spurious

vorticity . The Godunov-type fluxes arguably have the strongest physical basis in fi-

nite volume methods so we expect our scheme to have minimal numerical dissipation.

Since this method is a two-dimensional cure, we will not attempt to solve the one

dimensional carbuncle but only the 1 1/2 dimensional carbuncle. The scheme does

not require predictions from any independent vorticity computation since the problem

is purely an irrotational flow. The vorticity correction algorithm will assume the

independent vorticity estimate Ωn+1
IND = 0 at all times. Coupled with the Hancock
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is first stage instability.

scheme and Roe-solver, it will be defined as Hancock-VC scheme. Also, we will again

use a Gauss-Seidel method to perform the sub-iterations within each time step with

κ = 0.6. However, we will enforce a tighter error vorticity tolerance (O(10−14)) to

eliminate the contribution of spurious vorticity to the carbuncle.

4.6.1 The 1 1/2 Dimensional Carbuncle

This is a test problem which produces shock instabilities and spurious vorticity.

The configuration and parameters of this numerical experiment are described in

chapter 2 and note that we chose ν = 0.4 and γ = 1.4.

Our results indicate that for a Mach 7 flow, the vorticity capturing Hancock

scheme (Hancock-VC) preserves irrotationality even after T=10000 (Fig 4.17) un-

like the pure Roe-method(Fig 4.16). However the VC scheme requires 1000 sub-

iterations9 per time step. For some problems, the VC scheme also needed a larger

value for κ to surpress the instability while for other problems, the scheme is not

9This is the maximum number of sub-iterations we have allowed in one time step.
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able to contain the instability at all.

For this Mach 7 flow, preserving vorticity is not enough to prevent the shock

instabilities as seen in Fig 4.1510. We still observe the ‘pimples’ stage only without

spurious vorticity. In Fig 4.18, we see that the residual increases quite rapidly to

O(0.1) yet the enstrophy within the system remains machine-zero.

It is clear now that vorticity is not the root of the carbuncle. We now strongly

believe that spurious vorticity generation is more of an effect rather than a cause

of the carbuncle. This implies that controlling vorticity is not the solution to cure

the carbuncle. We suspect that the instability is driven by a very strong mechanism

which is of a one dimensional nature.

10Our results are not inconsistent with the results in [51] because they had a slightly different
set-up. In particular, they assume periodic top-bottom boundaries and used a smaller seeding
0(10−16)
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Having said that, we seek a different methodology of preventing the carbuncle,

specifically by directly controlling discrete entropy. This will be the subject of the

next two chapters.
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CHAPTER V

ENTROPY CONSERVATION IN BURGERS

EQUATION

We have seen in chapter 2 that the entropy condition based on equation 2.431 is

not sufficient to enforce the second law of thermodynamics when numerically solving

a steady stationary strong shock in one dimension. Another approach to impose

the second law of thermodynamics is to define an entropy function2 U(u) for which

an additional conservation law holds for smooth solutions. There is an inequality

however, for discontinuous data. This chapter is intended to introduce the concept

of implementing discrete entropy conservation law directly into a numerical flux

function.

In theory, discretely controlling entropy is an easier task than controlling vor-

ticity. In a system of conservation laws, conserving entropy is only an algebraic

constraint on the main variables3 whereas conserving vorticity4 is a differential con-

straint. Moreover, entropy remains a scalar quantity even in three dimensions but

1This is for a right moving shock. For a left moving shock, the inequality signs are flipped over.

2This entropy function has to be convex.

3Usually density, velocity and pressure are defined as main variables.

4Vorticity is conserved only in two dimensions as we have witnessed in the previous chapter.
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vorticity is a vector with three components. The entropy conservation equation is

a hyperbolic scalar conservation law similar to the conservation of mass equation.

These equations can be predicted quite accurately based on one dimensional physics.

However, the same thing cannot be said for vorticity. As seen and discussed in the

previous two chapters, controlling vorticity requires corrections of multi dimensional

nature.

There are benefits of modelling and predicting a fluid based on one dimensional

grounds. If the physics remain mostly one dimensional, the technology extension to

multi dimension is straight-forward. Appealing to a finite volume formulation, we

can predict the fluid in a cells of a Cartesian mesh based on computing the fluxes at

each interface dimension by dimension.

In a more general context, we only need a flux-solution (flux function) at the nor-

mal interface of adjacent control volumes which contain two states of fluid5. This is a

very simple yet elegant idea which can be used in arbitrary-shaped control volumes

particularly in unstructured grids, the most natural grid technique on curvilinear

bodies or complex configurations. The computational cost of one dimensional tech-

niques is also usually cheaper than those of multi dimensional methods.

Should including entropy conservation be the cure to the carbuncle phenomenon,

we can expect that the formulation will go a long way making its mark in the CFD

community. Our goal is to include entropy conservation directly into the numer-

ical method when solving the systems of Euler equations. However, we intend to

introduce the concept and underlying principles of entropy conservation in a scalar

problem which is much simpler than those from a nonlinear system like the Euler

5Recall that this is a finite volume method.
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equations. The scalar problem in mind will be the Burgers equation. Once we have

understood entropy conservation for Burgers equation, we will present the idea in

the context of Euler equations.

5.1 Discrete Inviscid Burgers Equation

The original one dimensional Burgers equation is written as

∂tu+ u∂xu = α∂xxu (5.1)

If we take the limit α → 0, we get the inviscid Burgers equation which can be written

as a scalar hyperbolic conservation law

∂tu+ ∂xf = 0 (5.2)

where f = u2

2
is the conservative flux. The wave speed is λ = ∂f

∂u
= u and the shock

speed is Λs = [f ]
[u]

=
(u2

R−u2

L)

2(uR−uL)
= 1

2
(uL + uR).

We will follow closely Roe’s discretization technique in one dimension [84] . As-

sume that we have two adjacent states (L,R) with dual cell area (hL, hR), we dis-

cretize the Burgers equation semi-discretely as

hL∂tuL = fL − f ∗

hR∂tuR = f ∗ − fR (5.3)

where f ∗ = f ∗

sym − ψ is a numerical flux at ∗ decomposed into symmetric f ∗

sym and

asymmetric parts ψ yet to be determined. The update has two kind of interpre-

tations. One, the left and right states are point values at vertices that surround a

linear element centered at ∗. This is a residual distribution scheme where the resid-

ual (fL − fR) is split as (fL − f ∗) + (f ∗ − fR) and distributed to the left and right
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Figure 5.1: Dual interpretations of the updated scheme. The solid line represents
residual distribution scheme. The dashed line represent finite volume
scheme

states respectively. The other is finite volume interpretation where the left and right

states are cell-averaged values separated by a flux-interface ∗.

First, we will revisit the non-entropy conservative Godunov-type fluxes to obtain

the asymmetric part ψ. Then, we will construct an entropy conservative symmetric

flux based on a chosen entropy variable. Finally, we will determine the entropy fix

for an accurate entropy production across a shock.

5.2 Non Entropy-Conservative Fluxes

A finite volume flux discretization via Godunov type flux can be written as

fI = f ∗

sym − ψ (5.4)

where ψ is an asymmetric flux dissipation to stabilize the symmetric part f ∗

sym . The

interface flux fI is solved by a Riemann problem. For Burgers equation the exact
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Riemann solver has the following fluxes at the interface.

fI =



































0 if λL < 0 < λR implying sonic point rarefaction,

fL elseif λL + λR ≥ 0 implying left state solution,

fR else λL + λR < 0 implying right state solution.

(5.5)

The Roe-solver for the Burgers equation has the same solution except that it does

not recognize sonic point rarefactions (omit the first line of the above solution). To

include the solutions of the Riemann problem, set ψ = 1
2
λ∗[u] where [u] = uR − uL,

hence we will re-write the flux at the interface as

fI = f̄ − 1

2
λ∗[u] (5.6)

where we assume central differencing f ∗

sym = f̄ = fR+fL

2
for the symmetric part. The

asymmetric part is in terms of the interface wave speed λ∗ and the velocity difference
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of left and right states. The wave speeds for the exact and Roe solvers are

λ∗Exact =



































u2

R+u2

L

2(uR−uL)
if λL < 0 < λR,

uR+uL

2
elseif λL + λR ≥ 0,

−uR+uL

2
else λL + λR < 0.

(5.7)

λ∗Roe =



















uR+uL

2
elseif λL + λR ≥ 0,

−uR+uL

2
elseif λL + λR < 0.

(5.8)

Note that for Burgers equation, the wave speed is also the actual fluid velocity. Note

that λ∗ = 0 for stationary shocks. More importantly, except for cases that include

sonic point rarefactions, the exact and Roe solver solutions are identical. Although

this flux function enforces upwinding, however, it does not have any mechanism

to ensure that entropy is conserved for smooth flow. We shall next introduce the

concept of entropy conservation law.

5.3 Entropy Conservation For Inviscid Burgers Equation

For most aerospace engineers, entropy is a representation of the second law of

thermodynamics and is precisely defined as S = ln p − γln ρ. In a more general

perspective, entropy is defined as a scalar convex function U such that a system

of equations like the hyperbolic conservation laws ∂tu + ∂xf = 0 can be uniquely

mapped into the scalar one dimensional entropy conservation law

∂tU + ∂xF = 0 (5.9)

via the entropy variables v = ∂U
∂u

[96], [7]. However, the choice of entropy variables is

not unique even for the scalar Burgers equation. But nevertheless, we will choose a

simple yet physically relevant quantity to represent entropy for the Burgers equation.
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Define a convex entropy function U = u2 so that the entropy variable is v = ∂U
∂u

=

2u. We insist that ∂F
∂U

= ∂f
∂u

which implies that the entropy flux is F = 2
3
U

3

2 = 2
3
u3.

Note that the selected entropy variable is twice the kinetic energy of the system.

We intend to include the discrete entropy conservation law in our numerical flux

function while at the same time, keeping the usual discrete conservation of fluid

velocity in the inviscid Burgers equation. In other words, we want to include another

constraint to the numerical flux function so that it satisfies entropy conservation law.

Consider the same semi-discrete update proposed by Roe [84]. We want entropy

conservation in the symmetric part so we will drop the asymmetric part in this

analysis. Hence

hL∂tuL = fL − f ∗

sym

hR∂tuR = f ∗

sym − fR (5.10)

An entropy update will be

hL∂tUL = vL(fL − f ∗

sym)

hR∂tUR = vR(f ∗

sym − fR) (5.11)

with the total element update computed as the sum of the two nodes given by

∂t(hLUL + hRUR) = −[vf ] + [v]f ∗

sym (5.12)

Next, we will directly include the discrete entropy conservation law to the numerical

flux of the Burgers equation. To ensure proper entropy update, we need the semi

discrete flux function to satisfy the semi discrete entropy conservation law, ∂t(hLUL+

hRUR) = −[F ] which requires [vf ] − [v]f ∗

sym = [F ] so that

(u3
R − u3

L) − 2(uR − uL)f ∗

sym =
2

3
(u3

R − u3
L) (5.13)
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Solve for the entropy conservative fluxes

f ∗

sym =
1

6
(u2

R + uRuL + u2
L) = fC (5.14)

Of course, this entropy conserving flux is not applicable across a shock since entropy

is not conserved across one.

5.4 Including Entropy Production

For smooth solutions, we want entropy to satisfy a hyperbolic conservation law.

However, when a solution is discontinuous, entropy should be produced across the

discontinuity. For Burgers equation, the shock is the only the form of physical

discontinuity6. For entropy variable U = u2, it decreases across a shock. All of these

can be achieved if our scheme is entropy stable. Mathematically, an entropy stable

scheme satisfies the following inequality [96], [7].

∂tU + ∂xF ≤ 0 (5.15)

We now include a proper entropy production so that the updated scheme is entropy

stable. It suffices for now that it ensures the correct sign of entropy production rather

than the correct quantity of production. A semi-discrete entropy update of the two

points are

hL∂tUL = vL(fL − f ∗

sym) + vLψ

hR∂tUR = vR(f ∗

sym − fR) − vRψ (5.16)

giving total entropy update as

∂t(hLUL + hRUR) = −[vf ] + [v]f ∗

sym − [v]ψ (5.17)

6For the Euler equations, we have a contact discontinuity across which entropy is conserved.



126

5.4.1 Entropy Production For the Symmetric Flux

First, let us assume no contribution from the asymmetric part ψ = 0. To achieve

entropy conservation, we need (as before) [vf ] − [v]f ∗

sym = [F ] in which f ∗

sym = fC .

But now, we are interested in the entropy production of f ∗

sym. Let the difference

between any flux f ∗

sym and the entropy conservative flux F be the entropy production

P = [v]f ∗

sym − [vf ] + [F ] (5.18)

The total entropy update computed directly from the entropy conservation law is

∂t(hLUL + hRUR) + [F ] = P (5.19)

in which we require P ≤ 0 for entropy stability. For the Burgers equation, the general

symmetric flux function can be written as 7

f ∗

sym =
α

4
(u2

L + u2
R) +

1 − α

2
uLuR =

1

4
(u2

L + u2
R) − 1

4
(1 − α)[u]2 (5.20)

Hence the entropy production satisfies the following relation [84], [75]

P =
1

2
(α− 2

3
)[u]3 (5.21)

We need to take α > 2
3

for compressive regions [u] < 0 and α < 2
3

for expansive

regions to ensure entropy stability. For the choice of α = 2
3
, we retain the entropy

conserving flux f ∗

sym = fC with zero entropy production, and assign the task of

entropy production in the asymmetric part.

5.4.2 Entropy Production For the Asymmetric Flux

Ideally, we would like the symmetric flux to be purely an entropy conserving flux

so that the job of producing entropy will be done by the asymmetric (dissipative)

7Note if α = 1, we have the pure central difference scheme.
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flux. Assume that now we apply dissipative flux in the form of ψ = 1
2
λ∗[u], where

λ∗ can be either from exact or Roe method described in section 5.1. If we choose

f ∗

sym = fC , 5.17 becomes

∂t(hLUL + hRUR) + [F ] = −[v]
1

2
λ∗[u] (5.22)

which implies that entropy production would come only from the dissipative flux.

Note that λ∗ is always greater than zero which means that [v]1
2
λ∗[u] = [u]λ∗[u] ≥ 0.

Thus we have entropy stability. But achieving entropy stability means that we merely

have obtained the correct sign of entropy production and not the correct amount.

To understand this further, we will introduce the term entropy consistency.

5.5 Including Entropy Fix to Ensure Entropy Consistency

Our intention is to include accurate entropy production across shocks. If not

enough entropy is produced across shocks, we may get unstable solutions or spurious

oscillations being generated. But producing too much entropy will create a diffused

shock profile. We will loosely define an accurate or consistent entropy production as

the precise amount of entropy needed to produce monotone solution when the fluid

goes through a shock without compromising much of the shock profile.

Ideally, there should be a balance between achieving monotone solutions and a

crisp shock profile. However, it is difficult to gauge exactly how much entropy needs

to be produced to obtain this especially in the context of solving the Euler equations.

Fortunately for the Burgers equation, there is a simple approach.

5.5.1 Achieving Entropy Consistency from the ‘Jump’ Condition

One way to determine consistent entropy production is by looking from the per-

spective of the fluids jump condition. Note that the jump condition enforces conser-
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vation across discontinuities and can be written as (refer to appendix H)

[f ] = Λ[u] (5.23)

where Λ is the speed of discontinuity and [u] = uR − uL. It must be stressed that

entropy is not conserved across shocks. We assume that the entropy jump condition

will be enhanced by a production term across a shock8. Assuming U and F are

entropy functions and fluxes, entropy will satisfy the following condition

[F ] = Λ[U ] + P (5.24)

where P denotes production term9. From section (5.3), to ensure we semi-discretely

satisfy entropy conservation, we require

[v]f ∗ − [vf ] + [F ] = 0 (5.25)

To satisfy entropy-consistency, we insist that

[v]f ∗ − [vf ] + [F ] = P = [F ] − Λ[U ] (5.26)

Hence

[v]f ∗ = ([vf ] − [F ]) + ([F ] − Λ[U ]) (5.27)

Note that on the RHS, quantities in the first parenthesis represent entropy-conserving

part. Quantities in the second parenthesis denote the consistent entropy-production.

The former can be viewed as the symmetric part of the flux. The latter should be a

8This is also included in appendix H.

9To be precise, we actually have to include sum of the jumps across the waves if there is more
than one wave but for now, we just assume one.
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part of the asymmetric (dissipative) flux. For Burgers equation, (5.27) becomes

2[u]f ∗ = [u3] − uR + uL

2
[u2]

= (u2
R + uRuL + u2

R)[u] − (uR + uL)2

2
[u] (5.28)

Hence an entropy consistent flux for Burgers equation is

f ∗ =
1

4
(u2

R + u2
L) (5.29)

which is exactly the arithmetic averaging for the fluxes. This result however, is

not surprising. Let us consider a stationary shock where there is zero contribution

from the asymmetric flux 1
2
λ∗[u] (since λ∗ = 0). The exact Riemann solver (or Roe

solver) f ∗ = f̄ − 1
2
λ∗[u] solves the shock exactly hence generating the exact entropy

production across the shock. This entropy production has to be from the symmetric

part which is the arithmetic mean.

5.5.2 Achieving Entropy Consistency from f̄ − fC

The above result can also be interpreted from another perspective. We know

previously that the asymmetric part of the new flux function is identical to either the

exact or Roe solvers. However, we have lost the entropy production in the symmetric

portion by choosing the entropy conservative flux over the central differencing. Let

the difference between the two symmetric fluxes be the entropy production required

(in addition to the entropy production generated by the asymmetric flux) across
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shocks

D = f̄ − fC

=
1

4
(u2

R + u2
L) − 1

6
(u2

R + uRuL + u2
L)

=
1

12
(u2

R − 2uRuL + u2
L)

=
1

12
[u]2

=
1

12
[λ][u] (5.30)

Hence the entropy conservative flux function with Roe’s entropy stable dissipation

(EC-R) and entropy fix will be

fI = fC − 1

2
(λ∗Roe +

|f([λ])|
6

)[u] (5.31)

and λ∗Roe being the Roe’s wave speed at interface * define in section 2. We have

examined two options in determining the entropy fix f([λ]).

Entropy Fix 1

For the first method, the entropy fix is only applied in compressive regions.

f([λ]) =



















0 if uR − uL ≥ 0,

[u] if uR − uL < 0.

= min(0, [u]) (5.32)

This is the opposite to the entropy fix proposed for Roe solver capturing rarefaction

fans. In addition, note that with this fix we have recovered the original Roe-flux for

compressive regions which includes shocks.

Entropy Fix 2

For the second method, the entropy fix is applied to both compressive and ex-

pansive regions.

f([λ]) = [λ] = [u] (5.33)
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In other words, for compressive regions, the second method is identical to the first.

We do not expect the entropy fix to strongly affect the expansive regions since the net

entropy fix is proportional to the change in wave-speeds which is relatively smooth

in expansive regions. However, we hope that the entropy fix will provide some

smoothing mechanism to smooth out under-resolved expansive regions.

5.6 Numerical Examples

We want to see how the entropy conserving flux (EC) perform when tested with

several problems satisfying Burgers equations. We will utilize Roe method for dissi-

pation so our scheme will be denoted by EC-R. We will also include results of using

the entropy fix. We will only compare the results of the two entropy fixes in Test 1

and for the rest of the numerical experiments, we have used entropy fix 2.

We prescribe 40 cells within the computational domain with periodic boundary

conditions. The Courant number is 0.8 for all cases and results from the exact Rie-

mann solver and Roe-solver are also included. Note that the solid lines represent

exact solutions and these solutions are analytically determined unless stated other-

wise. Also, it will be assumed that all of the numerical results are produced using a

first order scheme (both time and space) unless stated otherwise.

5.6.1 Test 1: Modelling Rarefaction with Stationary Shock

This problem is taken from [54]. We will compute the following square wave

initial value problem to find u(x, t) at T=8 (8 time-steps).

u(x, 0) =



















−1 if 1
3
≤ |x| ≤ 1,

1 if |x| < 1
3
.

(5.34)
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Figure 5.3: Test 1-IC Stationary Shock
and Rarefaction
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Figure 5.4: Test 2-IC Moving Shock and
Rarefaction

The square wave will evolve into a rarefaction fan on the left while the right side

will remain a stationary shock. Note that this problem will contain a sonic point

rarefaction.

The exact solution to this initial value problem is

u(x, t) =



















































−1 if −∞ < x < x1,

−1 + 2 x−x1

x2−x1

if x1 < x < x2,

1 if x2 < x < xshock,

−1 if xshock < x <∞.

(5.35)

where x1 = −1
3
− t, x2 = −1

3
+ t and xshock = 1

3
. Figure (5.5)-(5.8) are results of

various first order schemes. It shows the EC-R scheme does a decent job predicting

the sonic point rarefaction wave compared to Roe solver 10 although not as smooth

as the exact Riemann solver. The smoothness can be improved with either using

10Recall Roe solver cannot detect sonic point because it only sees rarefactions as rarefaction
shocks
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Figure 5.5: Test 1-Exact Riemann solver
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Figure 5.6: Test 1-Roe solver
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Figure 5.7: Test 1-EC-R solver
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Figure 5.8: Test 1- EC-R solver with en-
tropy fix 1

entropy fix 2 (Fig 5.11) or more successfully with a second order method (Fig 5.10).

But across the shock, the EC-R scheme does not produce monotone solution even

when a limiter is applied (Fig 5.9). However, this can be remedied with entropy fixes

derived in section 5.5 giving entropy consistency. With either entropy fix 1 or 2, the

EC-R flux produces shock solutions identical to those produced by the exact and Roe

solver. This is to be expected since with the entropy fix, the EC-R scheme becomes

the exact solver across a shock. However, the results of rarefactions are slightly better
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Figure 5.9: 2nd order EC-R solver
using harmonic limiter
(Test 1) with spurious
over/undershoots present.
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Figure 5.10: 2nd order EC-R solver
(with entropy fix 1) using
harmonic limiter for Test 1.
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Figure 5.11: EC-R solver with entropy
fix 2 (Test 1). Note that the
rarefaction region is slightly
smoother than the one pro-
duced with entropy fix 1.
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Figure 5.12: 2nd order EC-R solver
(with entropy fix 2) using
harmonic limiter for Test 1.

when using entropy fix 2 hence from now on, we will only deploy entropy fix 2 as the

entropy fix in our computations.
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Figure 5.13: Test 2-Exact Riemann
solver
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Figure 5.14: Test 2-Roe solver
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Figure 5.15: Test 2-EC-R solver
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Figure 5.16: Test 2-EC-R solver with en-
tropy fix

5.6.2 Test 2: Modelling Rarefaction with Moving Shock

This problem is also taken from [54]. We will compute the following square wave

initial value problem to find u(x, t) at T=15.

u(x, 0) =



















0 if 1
3
≤ |x| ≤ 1,

1 if |x| < 1
3
.

(5.36)
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Figure 5.17: 2nd Order EC-R flux with
harmonic limiter for Test 2.
Note that there are small
spurious over/undershoots
even with a limiter being
applied.
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Figure 5.18: 2nd order EC-R solver
(with entropy fix) using
harmonic limiter

This problem is similar to the previous one except that the shock is moving and that

there is no sonic point. The exact solution to this initial value problem is

u(x, t) =



















































0 if −∞ < x < x1,

x−x1

x2−x1

if x1 < x < x2,

1 if x2 < x < xshock,

0 if xshock < x <∞.

(5.37)

where x1 = −1
3
, x2 = −1

3
+ t and xshock = 1

3
+ 1

2
t. Figure (5.13)-(5.16) are the nu-

merical results. Again, the EC-R scheme requires entropy fix for entropy consistency

across the shock even when a second order scheme with limiter is applied (Fig 5.17).
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5.6.3 Test 3: Modelling Compression Waves I

Note that the entropy fix is not able to distinguish between compression or shock

waves. However, it remains to be seen if this actually matters in the context of

Burgers equation. Before we continue any further, let us recall a few assumptions

with regards to applying an entropy fix. One, entropy fix is an artificial method to

generate ‘enough’ entropy so that the solution across a shock is monotone. Two, this

entropy fix only needs to be enforced for shock waves and not for compression waves

because in theory, entropy is conserved in compression waves.

Consider the following initial value problem.

u(x, 0) =



















0 if |x| > 1,

−u1 ∗ sinπx if −1 ≤ x ≤ 1.

(5.38)

where the amplitude u1 = 5.0 has been chosen. This is an initial value problem

which consists of compression and expansion waves. The compression waves will

then become a stationary shock and will interact with the expansion waves. The

expansion waves will weaken the shock and eventually the shock will flatten out. We

shall examine how the entropy conserving flux function (with and without entropy

fix) will perform in this problem. The exact solution was numerically determined.

From the six figures (Figs. 5.19-5.24), we can see that there is not much dif-

ference between using entropy fix or not when predicting the compression waves.

This result is not so surprising because the entropy fix is only a 1
6

correction to the

overall dissipation based on the difference of the left and right states hence for a

smooth function, this is not a big deal. However, as soon as the shock forms, the

difference between the left and right states are no longer marginal. As a result, the

method without entropy fix generates spurious overshoots which is highly undesir-
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Figure 5.19: Test 3-T=0

XCoord

u

-2 -1 0 1 2
-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Exact
Fix
No-fix

Figure 5.20: Test 3-Compression and
Expansion waves at T=1.
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Figure 5.21: Test3-Compression and Ex-
pansion waves at T=2.
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Figure 5.22: Slope of Compression be-
gins to steepen at T=4 but
there is only small differ-
ences between the 3 meth-
ods.

able. Including the entropy fix will remove this problem at the expense of a very

little diffusion downstream of the shock.

We have also conducted tests for uo = 0.05, 500 but their plots are not included

since all of the results with and without entropy fix are of similar patterns to those
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Figure 5.23: Test3-Shock forms at T=6.
Note that there is spurious
overshoot for the flux func-
tion without entropy fix.
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Figure 5.24: Test3-Decaying of shock
T=20. There is still spu-
rious overshoot for the flux
function without entropy
fix.

produced with uo = 5.0. The only discrepancy lies in the magnitude difference.

Recall that the analytical solution of the Burgers equation is a solution of the

nonlinear advection equation, u(x, t) = f(x− ut). For this problem, the normalized

solution is u
u1

= −sin(x − u
u1

u1t) which implies that the solution is dependent only

on x and u1t. For constant Courant number, the solution is self-similar. To further

justify this, we have plotted the normalized velocity difference between the scheme

having entropy fix ufix and the scheme without it u as a function of space and time.

∆u(x, t) =

√

(u− ufix)2

uo

(5.39)

The results of ∆u(x, t) for each case of uo up until a shock appears are included in

Figs. (5.25-5.28).

In addition, we have also included the results for the second order EC-R fluxes

(with and without entropy fix) using the harmonic limiter (Fig 5.29). It seems that

even with the limiter applied, spurious over/undershoots still are present near the
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Figure 5.25: Test 3-The normalized dif-
ference between numerical
velocities predicted with
and without entropy fix at
T=1.
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Figure 5.26: Test 3-The normalized dif-
ference between numerical
velocities predicted with
and without entropy fix at
T=2.
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Figure 5.27: Test 3-The normalized dif-
ference between numerical
velocities predicted with
and without entropy fix at
T=4.
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Figure 5.28: Test 3-The normalized dif-
ference between numerical
velocities predicted with
and without entropy fix
at T=5 just before shock
forms. Note there is at
most 5-6 percent difference.

shock for the EC-R flux without the entropy fix. This further supports the argument

that the entropy fix is required for genuine shock prediction.
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Figure 5.29: The second order results for Test 3 using the EC-R flux with harmonic
limiter. Note that even with the limiter being applied, there are spurious
overshoot and undershoots if the entropy fix is not used.

5.6.4 Test 4: Modelling Compression Waves II

Consider the following initial value problem.

u(x, 0) =



















u0 if |x| > 1,

u0 − u1 ∗ sinπx if −1 ≤ x ≤ 1.

(5.40)

where the amplitude u1 = 0.5 has been chosen. The background velocity u0 are

chosen to be 0.0, 1.0, 5.0. This is an initial value problem which also consists of

compression and expansion waves. However, the normalized analytical solution will

be in the form of

u(x, t) =
u0

u1

− sin(x− u

u1

u1t) (5.41)

This will be a test for slow moving strong shocks or fast moving weak shocks coupled

with rarefactions. Results are included in Fig. 5.30-5.41. Note that the only visible

difference of using the entropy fix or not is seen when the background velocity u0 =
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Figure 5.30: Test 4-u0 = 0.0 at T=0
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Figure 5.31: Test 4-u0 = 0.0 at T=2.
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Figure 5.32: Test 4-u0 = 0.0 at T=6.
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Figure 5.33: Test 4-u0 = 0.0 at T=10.

0.0. The flux function without the fix generate spurious over/undershoots when the

shock is formed unlike the flux function which includes entropy fix. This is consistent

with the results produced in the previous test.

For finite background velocities, there are no spurious overshoots for either schemes.

This is attributed mainly to the ‘extra’ dissipation mechanism11 when u0 is non-zero

11For a stationary shock, λ∗ = 0 thus the asymmetric flux produces less dissipation. However,
when the shock is moving λ∗ 6= 0 giving additional dissipation to the asymmetric flux.
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and this dissipation is linearly proportional to the magnitude of u0

u1

. The dissipation

introduced by the entropy fix (factor 1
6
) is marginal compared to the dissipation pro-

duced by the background velocity hence the difference between using or not using

the fix is hardly noticeable.

But the EC-R scheme is quite diffusive when predicting fast moving weak shocks

(Fig. 5.41). Nonetheless, the results of the scheme with or without entropy fix are

almost identical. This implies that the entropy fix does not compromise the quality

of predicting fast moving shocks.

5.6.5 Test 5: Modelling Two Dimensional Problem

We will introduce a test case where a ray of compression waves meet and becomes

a shock. This is also known as the two dimensional ‘tree-case’. The following partial

differential equation is solved.

∂tu+ ∂x
u2

2
+ ∂yu = 0 (5.42)

where we have set the y-advection speed to a constant. The computational domain

is a square domain with length of 1. We are interested to obtain the steady state

solution with the following boundary conditions.

u(x, y) =



































u(0, y) = 2.0

u(x, 0) = 2.0 − 3.0x

u(1, 0) = −1.0

(5.43)

Note that we have only specified three boundaries. The last one is the top boundary

(y = 1) which is chosen to be non-reflecting. We have chosen 40 x 40 cells with

ν = 0.1. The results are included in Figs 5.42-5.50.

From the results of our test cases, we can justify that it is not critical if an

entropy fix is used for compression waves or fast moving weak shocks when solving
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the Burgers equation. However, all of our results indicate that it is imperative to

include the entropy fix (hence EC-R is entropy-consistent) across shocks to ensure

monotonicity. Without the entropy fix, we only have an entropy stable scheme but

there is not enough entropy production to preserve monotonicity. By including the

fix, we have reverted to the original Roe-flux in compressive regions and this is highly

desirable for shock capturing (at least for Burgers equation) since the Roe-flux is an

exact Riemann-solver when computing shocks.

It must be noted that for the Burgers equation, the Roe-flux is an entropy-

consistent flux when predicting shocks. However, for cases where there is a sonic

point, the Roe flux is not entropy satisfying unlike the EC scheme. Combining these

two features, we have the EC-R scheme which is entropy conserving for smooth

functions and entropy consistent across shocks. This may suggest that we should use

the Roe-flux as an entropy consistent flux function across a shock in Euler equations

as well. However, this is not true since we have seen how Roe-flux suffers from shock

instability in chapter 2 which is what we are trying to avoid.

The final flux formula we choose to work with for Burgers equation is

f ∗ =
1

6
(u2

L + uLuR + u2
R) − 1

4
|uL + uR|(uR − uL) − 1

12
|uR − uL|(uR − uL) (5.44)

where the first term conserves entropy. The second terms is the upwinding required

for linear stability, and produces entropy at a rate proportional to h2. The third

term produces entropy at a rate proportional to h3. It removes spurious oscillations

from captured shocks, and smoothes out under-resolved rarefactions.

We have said and shown enough on the principles of entropy conservation, stabil-

ity and consistency for Burgers equation. Now we shall begin our journey of doing

the same in the context of the Euler equations.
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Figure 5.34: Test 4-u0 = 1.0 at T=0
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Figure 5.35: Test 4-u0 = 1.0 at T=4
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Figure 5.36: Test 4-u0 = 1.0 at T=9.
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Figure 5.37: Test 4-u0 = 1.0 at T=20.
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Figure 5.38: Test 4-u0 = 5.0 at T=0
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Figure 5.39: Test 4-u0 = 5.0 at T=8
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Figure 5.40: Test 4-u0 = 5.0 at T=20.
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Figure 5.41: Test 4-u0 = 5.0 at T=50.
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Figure 5.42: Test 5-Results for 1st order Roe and EC1-R (with entropy fix) fluxes.
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Figure 5.43: Test 5-EC1-R flux (no entropy fix) solution. Not much difference with
the above contour plots.
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Figure 5.44: The cross sectional cut for
Roe and EC1-R (fix) fluxes
across the shock.
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Figure 5.45: The EC1-R (no fix) flux
across the shock. The so-
lution is not monotone.
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Figure 5.46: The cross sectional cut
for Roe and EC1-R (fix)
fluxes across the compres-
sion waves.
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Figure 5.47: The EC1-R (no fix) flux
across the compression
waves.
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Figure 5.48: The second order EC-R (fix) flux with the Superbee limiter.
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Figure 5.49: The cross sectional cut
across the shock for the EC-
R (fix) with Superbee.
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across the compression
wave for the EC-R (fix)
with Superbee.



CHAPTER VI

ENTROPY CONSERVATION IN EULER

EQUATIONS

In the context of the system of Euler equations, the entropy conservation law is

a direct representation of the second law of thermodynamics. For inviscid flow, this

law states that entropy should be conserved unless a shock is encountered. However,

this law is not directly enforced in current compressible flow codes. These codes solve

for conservation mass, momentum and energy with the assumption that entropy is

conserved along the streamlines of inviscid flow until shocks appear. But nonetheless,

without a precise mechanism to discretely control entropy, it is likely that spurious

entropy is generated. This is somewhat accepted in practice and usually a good

Euler code is the one that produces minimal spurious entropy [84].

The only form of entropy control enforced in practice is in the form of entropy

condition used to recognize and keep physical shocks while destabilizing rarefaction

shocks1. This led to the developments of the entropy conditions which were discussed

in chapter 2.

Nonetheless, in the same chapter we have pointed out that the commonly used

entropy condition is imprecise and most likely to be the source of one dimensional

1To destabilize rarefactions, usually artificial dissipation is added but in an imprecise manner.

150



151

shock instability. The most common fix to this is to add artificial dissipation in an

ad hoc manner.

We strive to offer a better deal. Since we strongly suspect that imprecise entropy

control is the root of the one dimensional shock instability, perhaps including the

entropy conservation law more directly to the flux function is the way to prevent

shock instability or at a larger scale, the carbuncle phenomenon.

Tadmor [95], [96] was the first to introduce the idea of directly including entropy

conservation law solving for the system of Euler equations at a semi-discrete level.

The underlying principle is that the discrete flux function not only satisfies discrete

conservation laws of the conservative variables, but also satisfies the scalar conser-

vation law for entropy in a discrete sense. Tadmor’s flux function performs well for

smooth data but will be unstable as soon as a shock is encountered2. Moreover, the

flux function is complicated and numerically expensive. Barth [7] derived another

semi- discrete entropy conserving flux function which is also numerically expensive.

Neither of these fluxes preserves isolated contact discontinuities, which is an impor-

tant property for boundary layer computation. Tadmor [96] and Lefloch et. al [59]

proposed a fully-discrete entropy conserving fluxes although it remains mostly of aca-

demic interest because of their extreme complexity and numerical cost. Roe [84] on

the other hand, discovered a simple and numerically well-formed entropy conserving

flux. This gives us hope in achieving our goal of controlling entropy.

We will first introduce the concept of entropy conservation for Euler equations and

define our entropy variables. Next, we will include some numerical flux functions that

2This is expected since entropy is not physically conserved across a shock. Instead we want an
entropy conserving scheme to be an entropy-stable or entropy consistent scheme across a shock so
that entropy is appropriately’ produced.
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conserve entropy and discussing briefly the features of each flux function. We will also

introduce the concept of entropy stability and consistency for the Euler equations

and how to numerically achieve them. Note that in this chapter, we will follow closely

the work of Roe [84] but at the same time will add our own contributions specifically

by presenting explicit averaged states for the dissipative flux and an entropy fix to

achieve entropy consistency. Our analysis will be presented mostly in one dimension

but the results can be extended straightforwardly to multi dimensions.

6.1 One Dimensional Entropy Conservation For Euler Equa-
tions

The system of hyperbolic conservation law in one dimension is given by

∂tu + ∂xf(u) = 0 (6.1)

Our focus will be the Euler equations where mass, momentum and energy are con-

served and written together with the conservative fluxes as

u = [ρ, ρu, ρE]T (6.2)

f(u) = [ρu, ρu2 + p, ρuH]T (6.3)

The total energy is defined as E = e + u2

2
and the total enthalpy H = E + p

ρ
. The

pressure is determined from the equation of state, e = p(γ−1)
ρ

which is assumed to be

with an ideal gas constant γ. This system of equations is also known as the ideal-gas

Euler equations.

For this set of equations, the entropy S = ln p− γln ρ remains constant along the

streamline path dx
dt

= u until a shock appears. This implies that besides conservation

of F.1, we also have

∂tS + u∂xS = 0 (6.4)
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If we couple this equation with conservation of mass and let U = ρS and F = ρuS,

we have the entropy conservation law

∂tU + ∂xF = 0 (6.5)

In general, we define U = −ρg(S) and F = −ρug(S) where g(S) is some scalar

function such that

g
′

> 0,
g

′′

g′
<

1

γ

so that U = −ρg(S) is a convex function. The negative sign is introduced for

a mathematical convenience, specifically in proving stability conditions [84], [96].

Mathematically speaking, a function has to be bounded for it to be stable. For

inviscid flow, the physical entropy S is constant for smooth flow but will increase

when a shock is encountered. By inserting a negative sign, entropy will decrease

across a shock implying that the following inequality

∂tU + ∂xF ≤ 0 (6.6)

is satisfied. This is the entropy stability condition and states that the entropy func-

tion U is bounded by zero for a closed system3.

It is also important to define the entropy variables v. These form a vector that

provides an alternative description of the flow. Let us define the rate of change of

the conservative variables as ∂tu, so that the rate of change entropy is ∂tU = v∂tu

where v = ∂U
∂u

. In other words, the entropy variables are a transformation vector that

maps the conservative variables into the entropy variable. It was shown by Harten

[46] that this mapping is one-to-one under certain restrictions.

3A closed system is defined as a system where fluid does not enter or leave at the boundaries.
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Figure 6.1: Dual interpretations of the updated scheme. The solid line represents
residual distribution scheme. The dashed line represent finite volume
scheme

There are many forms of entropy variables, v since it depends on the choice of

the entropy variables, U . In this thesis, we choose the physical entropy function, also

selected by [7], [84], where

U = − ρS

γ − 1
(6.7)

since it gives a simple form of the entropy variables

v =
∂U

∂u
= [

γ − S

γ − 1
− 1

2

ρ

p
(u2),

ρu

p
,−ρ

p
]T (6.8)

and is the only entropy function that can be used for the Navier-Stokes equations

[49]. We are now ready to construct the discrete entropy conserving flux.

6.2 Discrete Entropy Conserving Fluxes For Euler Equa-
tions

In this section, we will introduce the concept of discrete entropy conservation and

will closely follow the work of Roe [84]. Assume that we have two adjacent states

(L,R) with dual cell area (hL, hR), we discretize the Euler equations semi-discretely
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as

hL∂tuL = fL − f∗

hR∂tuR = f∗ − fR (6.9)

where f∗ = f∗sym − ψ is a numerical flux at ∗ decomposed into symmetric and asym-

metric parts4 yet to be determined. We can interpret the update as either a finite

volume or residual distribution scheme as seen in Fig 6.1. The finite volume interpre-

tation is where we have left and right cell-averaged values separated by a common

flux interface ∗. In the residual distribution context, the left and right states are

point values at vertices that surrounds a linear element centered at ∗. The residual

(fL − fR) is split as (fL − f∗) + (f∗ − fR) and distributed to the left and right states

respectively.

Recall that ∂tU = v∂tu, hence a semi-discrete entropy update is

hL∂tUL = vT
L(fL − f∗)

hR∂tUR = vT
R(f∗ − fR) (6.10)

Assuming [] = ()R − ()L, the total element update will then be

∂t(hLUL + hRUR) = −[v · f ] + [v]Tf∗ (6.11)

We want the discrete entropy update to satisfy the discrete entropy conservation law.

To achieve this, we need to equate the RHS to their correct values thus select

[v · f ] − [v]Tf∗ = [F ] (6.12)

4A simple example would be the Lax-Wendroff scheme in which the symmetric part is the pure
central scheme and the asymmetric part is the numerical diffusion.
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It can be shown by direct computation that

v · f = ρu+ F (6.13)

Combining this result with the linearity of the differencing operator [], 6.12 becomes

[v]T f∗ = [ρu] (6.14)

This constraint will be the discrete entropy conserving condition. However, this is

a single condition on the vector f∗ so there will be many solutions for the entropy

conserving flux f∗. Let us now briefly introduce some of the entropy conserving

fluxes.

6.2.1 Tadmor’s Entropy Conserving Flux Function

Before we begin, we need to assert two important properties for an entropy con-

serving flux. One, it must be numerically consistent, that is f∗(uL,uR) = f(u∗) as

the grid size approaches zero. Two, it has to satisfy 6.14.

Tadmor [95], [96] constructed the entropy flux function by connecting vL and

vR by a straight path in v space. Assuming this path is represented by ζ, we can

compute v(ζ) anywhere along this path

v(ζ) = ζvR + (1 − ζ)vL (6.15)

We then can compute f∗ along the path.

f∗ =

1
∫

0

f(v(ζ))dζ (6.16)

This numerical flux is consistent. To see that this is an entropy conserving flux,

multiply the equation by [v]T so that

[v]T f∗ =

1
∫

0

[v]T f(v(ζ))dζ (6.17)
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It can be shown that [v]Tdζ = dv and that dvT f = d(ρu). Hence

[v]T f∗ =

1
∫

0

dvT f =

1
∫

0

d(ρu) (6.18)

which completes the proof. However, it must be noted that the integrals of 6.16 are

not in closed form and must be evaluated numerically which makes the flux function

expensive.

6.2.2 Barth’s Entropy Conserving Flux Function

Barth [7] provided an alternative to solving 6.16 by performing integration by

parts.

f∗ = [(ζ − 1

2
)f(v(ζ))]10 −

1
∫

0

(ζ − 1

2
)∂ζf(v(ζ))dζ

=
1

2
(f(v(ζ)L) + f(v(ζ)R)) −

1
∫

0

(ζ − 1

2
)∂vf∂ζvdζ

= f̄ −
1

∫

0

(ζ − 1

2
)∂vfdζ[v]

= f̄ −
1

∫

0

(ζ − 1

2
)∂uf∂vudζ

Barth showed that there exist scalings such that ∂vu = RRT and combined this

with the fact that ∂f
∂u

= RΛL under these scalings, hence

f∗ = f̄ −
1

∫

0

(ζ − 1

2
)(RΛL)(RRT)dζ[v]

= f̄ −
1

∫

0

(ζ − 1

2
)RΛRTdζ[v] (6.19)

In this form, the fluxes can be constructed either to conserve or produce entropy [7].

However, this is also an expensive method since the integral requires some form of

numerical quadrature for the matrix.
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We have so far shown two entropy conserving methods of which neither one can

be practically implemented for solving engineering problems. It is therefore not

surprising that these fluxes and more generally the concept of conserving entropy,

were mainly of academic interest. This perception should change since the discovery

of the practical entropy conserving fluxes by Roe [84].

6.2.3 Roe’s Entropy Conserving Flux Functions

Choose f∗ and such that

f∗ =















ρ∗u∗

ρ∗u∗2 + p∗1

γ
γ−1

p∗2u
∗ + 1

2
ρ∗u∗3















(6.20)

Our entropy conservation condition becomes

[v]T f∗ = −ρ∗u∗( [S]

γ − 1
+ [

ρu2

2p
])

+ (ρ∗u∗2 + p∗1)[
ρu

p
] − (

γ

γ − 1
p∗2u

∗ +
1

2
ρ∗u∗3)[

ρ

p
]

= [ρu] (6.21)

Choose a parameter vector z such that

z1 =

√

ρ

p
, z2 =

√

ρ

p
u, z3 =

√
ρp (6.22)

with the identities

ρ

p
= z2

1 ,
ρu

p
= z1z2

ρu2

p
= z2

2 , ρu = z2z3

S = −(γ − 1) ln z3 − (γ + 1) ln z1 (6.23)
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We employ the arithmetic mean ¯(x, y) and the logarithmic mean L(x, y) are defined

as

¯(x, y) =
1

2
(x+ y) (6.24)

ln(x) − ln(y)

x− y
=

1

L(x, y)
(6.25)

so that we can rewrite

[S] = −(γ − 1)
[z3]

zln
3

− (γ + 1)
[z1]

zln
1

(6.26)

where zln
1,3 = L((z1,3)L, (z1,3)R)5. Using identity [ab] = ā[b] + b̄[a], the entropy con-

serving condition becomes

ρ∗u∗(
[z3]

zln
3

+
γ + 1

γ − 1

[z1]

zln
1

− z̄2[z2]) + (ρ∗u∗2 + p∗1)(z̄1[z2] + z̄2[z1])

− (
γ

γ − 1
p∗2u

∗ +
1

2
ρ∗u∗3)2z̄1[z1] = z̄2[z3] + z̄3[z2] (6.27)

Recall that entropy-conserving condition is a single condition on a set of vectors so

there will be more than one solution. If we choose

u∗ =
z̄2

z1

(6.28)

and equating the terms [z3], [z2] and [z1] we get

ρ∗u∗ = z̄2z
ln
3 ⇒ ρ∗ = z̄1z

ln
3 (6.29)

p∗1 =
z̄3

z̄1

(6.30)

p∗2 =
γ + 1

2γ

zln
3

zln
1

+
γ − 1

2γ

z̄3

z̄1

(6.31)

5The algorithm for computing logarithmic mean is included in appendix E.
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Hence our entropy conserving interface fluxes are

f∗ =















z̄2z
ln
3

z̄3

z̄1

+ u∗f1

u∗

2
(γ+1

γ−1

zln
3

zln
1

+ f2)















= fC (6.32)

where an efficient computation of the logarithmic mean can be found in appendix E.

These entropy conserving fluxes are not numerically expensive and are well-formed.

We will only use this entropy conserving fluxes throughout the remainder of this

thesis.

Of course, just as for Burgers equation, entropy is not conserved across a shock.

As mentioned before, we need to obtain entropy stability across a shock. To achieve

entropy stability, we need to produce proper entropy production which will be a part

of the asymmetric dissipative flux. All of these will be the subject of the next section.

6.3 Including Dissipative Flux

Note that the entropy conserving fluxes fC in 6.32 are symmetric functions of

the left and right input states. These fluxes are similar to central difference schemes

and hence are numerically unstable by nature. To stabilize these fluxes, we need to

include upwinded dissipative fluxes which are usually asymmetric. Recall that our

definition of the numerical fluxes at interface is

f∗ = f∗sym − ψ (6.33)

where we have decomposed the flux into its symmetric and asymmetric parts. If we

select f∗sym = fC and ψ = 0, we will obtain Roe’s entropy conserving flux. We want

to include an upwinded dissipation in the asymmetric part ψ.

A numerical flux function is usually viewed as a pure central difference scheme
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subtracted by some form of numerical dissipation expressed in the form of

f∗ = f̄ − 1

2
D[u] (6.34)

where f̄ is the arithmetic mean of the left and right states and D is the dissipative

matrix. Note that flux functions based on linearized Riemann solvers have the dis-

sipative matrix expressed as D = R|Λ|L where R is the right eigenvector matrix,

Λ as the diagonal eigenvalue matrix and L is the left eigenvector matrix satisfying

LR = I. Usually it is too expensive to obtain the exact value of each component of

the matrices so averaged states are normally used.

For a system of diagonalizable hyperbolic equations such as the Euler equations,

we can write its conservation law of (F.1) in terms of

∂tu + A∂xu = 0 (6.35)

where the Jacobian matrix is A = ∂f
∂u

= RΛL and that the right eigenvectors with

heir corresponding eigenvalues in diagonal form are given as

R =















1 1 1

u− a u u+ a

H − ua 1
2
(u2 + v2) H + ua















(6.36)

Λ =















u− a 0 0

0 u 0

0 0 u+ a















(6.37)

Note that the left eigenvector is the inverse of the right (L = R−1).

The linearized Riemann solver based on Roe flux enforces the Rankine-Hugoniot

jump relation

[f ] = Â[u] (6.38)
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where Â = R̂|Λ̂|L̂ is the averaged state determined such that the flux function

recognizes precisely isolated discontinuities of any strength. This is the property

that makes the Roe-flux one of the best shock capturing methods. Combining this

dissipative flux with the entropy conserving flux, our numerical flux function becomes

f∗ = fC − 1

2
Â[u] (6.39)

However, we will see in the next section that the Roe dissipative flux is not necessarily

ideal especially in the context of achieving entropy stability.

6.3.1 Enforcing Entropy Stability

Recall that entropy stability means that entropy within the system is a decreasing

function and satisfies the following inequality.

∂tU + ∂xF ≤ 0 (6.40)

From equation (6.11), the total entropy update within the element (now including

an asymmetric part as the dissipation term ψ = 1
2
R|Λ|L[u]) is

∂t(hLUL + hRUR) = −[v · f ] + [v]Tf∗

= −[v · f ] + [v]Tf∗sym − [v]Tψ

⇒ ∂t(hLUL + hRUR) + [F ] = −1

2
[v]TR|Λ|L[u] (6.41)

if we select f∗sym = fC since [F ] = [v·f ]−[v]Tf∗sym. To ensure entropy stability, we need

the RHS term to be non-positive but this may not be the case thus compromising

entropy stability. We will now introduce Roe’s entropy stable dissipative flux.

Before we do this, recall that the wave strengths of the Euler equations in one

dimension is given by L[u] = [αx
1 , α

x
2 , α

x
3 ]

T where the first and last components rep-

resent acoustic waves and the second component represents entropy wave which can
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be written in differential form as

αx
1 =

1

2
(
dp

a2
− ρdu

a
), αx

2 = dρ− ρdp

a2
, αx

3 =
1

2
(
dp

a2
+
ρdu

a
) (6.42)

For infinitesimal disturbances, it can be shown by direct computation and also noted

by [7] that6

L[u] = SRT [v] (6.43)

where the diagonal scaling matrix is

S =















ρ
2γ

0 0

0 (γ−1)ρ
γ

0

0 0 ρ
2γ















(6.44)

This was also proven by [84] using Merriam-Barth identity [71] but again only for

infinitesimal disturbances. Roe proposed the following numerical flux function

f∗ = fC − 1

2
R|Λ|RT[v] (6.45)

where we have included the diagonal scaling matrix within the diagonal wave speeds,

Λ = SΛ. Thus the total entropy update within the element is

∂t(hLUL + hRUR) = −[v · f ] + [v]Tf∗

= −[F ] − 1

2
[v]TR|Λ|RT[v] (6.46)

with the dissipative flux satisfying

−1

2
[v]TR|Λ|RT[v] ≤ 0 (6.47)

since the matrix R|Λ|RT is positive definite. We now have an entropy stable flux

function. The next question in mind is how do we determine the averaged states for

this new dissipative flux.

6The results in three dimensions are included in appendix A
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6.3.2 Determining Averaged State

Let D = R|Λ|RT be the new dissipative matrix. We want to know what are

the properties of the new dissipative flux. We know that D[v] is an entropy stable

dissipative flux. Also, it is easy to show that the dissipative matrix is consistent, i.e.

D∗(v,v) = D(v∗) (6.48)

Recall that the original Roe-flux dissipation is based on the Rankine-Hugoniot jump

condition such that

[f ] = Â[u] = R|Λ|L[u] (6.49)

which gives crisp capturing of discontinuties of any strength. For finite disturbances,

Roe’s new dissipative flux (also observed by Barth [6])

R|Λ|RT[v] 6= R|Λ|L[u] (6.50)

which implies that we have compromised the quality of capturing discontinuities for

entropy stability. Moreover, it is not clear what is the precise physical meaning of

D[v]. As a result, it is difficult to determine the averaged states of D because at the

moment, we are unclear on what general principle should D̂ be constructed.

However, Roe discovered that some averaging conditions need to be met in order

to preserve stationary contact discontinuities [84]. The idea is to conserve entropy

across contact discontinuities which requires two things. One, the density has to

be averaged using a logarithmic mean ρ̂ = ρln. Two, the averaged speed of sound

must be computed from â = (γp̂
ρ̂

)
1

2 . Unfortunately, we are still left to wonder how to

average the velocities and pressure, specifically on what physical constraints should

the two be averaged.
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Until we shed more light to the current situation, we have determined the averaged

dissipative matrix D̂ strongly based on numerical cost which satisfies the averaging

constraints given by [84]. For computational economy, we propose the following

averaged states for D.

ρ̂ = z̄1z
ln
3 (6.51)

û =
z̄2

z̄1

(6.52)

p̂ =
z̄3

z̄1

= p̂1 (6.53)

â = (
γp̂

ρ̂
)

1

2 (6.54)

Ĥ =
1

2
(û2) +

γ

γ − 1

p̂2

ρ̂
(6.55)

where

z1 =

√

ρ

p
, z2 =

√

ρ

p
u, z3 =

√
ρp (6.56)

with¯and ln being the arithmetic and logarithmic means defined earlier. We choose

simply to employ the average states already used to compute fC .

6.3.3 Enforcing Entropy Consistency

As mentioned before in the previous chapter, producing too much entropy would

lead to diffused shock profiles7. On the other hand, insufficient entropy production

across shocks would yield spurious oscillations or sometimes, unstable solutions. The

goal is to strike a balance between the two extremes and in the context of Euler

equations, this is not straightforward.

We have learned that to achieve entropy consistency in the Burgers equation, we

need to resolve to the original Roe-flux across a shock to obtain crisp and monotone

7An example of would be the Lax-Friedrich scheme
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shock profiles. Unfortunately, we have seen that in chapter 2 that the original Roe-

flux may not produce a genuine entropy-consistent solution when solving the Euler

equations. Consider the one dimensional stationary shock with one intermediate cell

within the shock8. In some circumstances (see section 2.3), when the intermediate

state is perturbed, the original Roe-flux maintained sharp and monotone steady shock

profiles. For these cases, this implies that the original Roe-flux produced just enough

entropy production to achieve stability but not enough to smear the shock hence the

term entropy consistency is appropriate here. However, in other circumstances, when

the intermediate state is perturbed, the Roe-flux produces solutions which never

converge due, even though the perturbed cell values are bounded by the left and right

states. In multi dimensions, this instability leads to the carbuncle. This suggests

that it may not be a good idea to use the original Roe-flux when capturing shocks in

the Euler equations because it captures the shock more sharply than actually desired.

Therefore, we have to come up with something better.

We have also learned from the Burgers equation that one way to achieve entropy

consistency across a shock is to include a small dissipation to the numerical wave

speeds. In the context of Burgers equation, by selecting the proper multiplication

factor to this small dissipation, we obtained just enough entropy production so that

the entropy stable flux function becomes the original Roe-flux across a shock. How-

ever, we can select another multiplication factor such that the entropy stable flux

achieve monotonicity but at a less sharply captured shock than those produced with

the original Roe-flux. This maybe the price that we have to pay in order to achieve

8This is a standard feature of the original Roe-flux capturing a discontinuity such as the shock
with one intermediate cell. A slight perturbation to the values of this cell may result in shock
instability and sometimes all it takes is just round off errors.
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entropy consistency without suffering from any shock instability.

It must be emphasized that this entropy fix is only applied to the acoustic waves.

This implies that the quality of the entropy wave which propagate contact disconti-

nuities and in multi dimensions, shear waves which are important in boundary layers,

are not compromised. Also, note that this dissipation is not used to stabilize shock

instability but is utilized to ensure monotonicity. We present an entropy fix based

on the change of acoustic wave-speeds across the interface. Our experience from the

Burgers equation indicate that there is a greater need for entropy fix when dealing

with stationary shocks. Hence we will develop the entropy fix for the Euler equa-

tions based on stationary shock formulation and hope that the formulation will still

be accurate for moving shocks. We want the fix to be simple yet effective.

Our entropy-consistent-upwinded interface-flux is9

fI = fC − 1

2
R̂|Λ̂fix|ŜR̂T[v] (6.57)

where Ŝ is a diagonal scaling matrix to ensure L̂[u] = ŜR̂T[v] andˆis the averaged

value at the cell interface.

We will only modify the averaged acoustic wave-speeds λ̂1 = û − â, λ̂3 = û + â

either individually or both depending on the change in the wave speeds across the

cell interface. We propose the following entropy-fix10.

|Λ̂fix| =















|λ̂1| + α|[λ1]| 0 0

0 |λ̂2| 0

0 0 |λ̂3| + α|[λ3]|















(6.58)

9Note the square parenthesis denote the finite difference operator [a] = ∆a = aR − aL.

10It can be shown in appendix F that our entropy fix always produces the correct sign of entropy
for either compressive or expansive region if α ≥ 0.
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where α = 0.2 determined by numerical experiments which compares with the value

α = 0.167 obtained by simple theory for Burgers equation. Higher α means more

dissipation to ensure monotonicity however, we have found that the choice of α = 0.2

works well for almost all the cases that we have tested.

Note that the fix is also applied not only to compression or shock waves but

also to rarefaction waves. However, we expect that the magnitude of the fix to be

proportional to the difference between the left and right states of a cell and entropy

is produced at a rate of only O(h3). This implies that for smooth data like the

rarefaction region, the effects of the fix will be small, hence entropy will still be

mostly conserved.

From the results of Burgers equation, even without entropy fix, the entropy con-

serving flux captures a rarefaction as an expansive region although first order solu-

tions are not quite smooth. We expect the trend would be the same for the Euler

equations and by either including the entropy fix and/or by using a second order

method, we hope that we get a smoother profile when capturing rarefactions.

6.4 Extension to More Dimensions

For a finite volume method, all the analysis presented thus far carries over

straightforwardly to any number of dimensions as long as the interface-flux is com-

puted via a pairwise (normal) interaction of adjacent cells.

Define two adjacent cells, L and R with volume VL and VR as shown in Fig. 6.2.

Let ~nLR be define as the normal direction along a common interface ∗ pointing from
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RL

LR
n

x

y

Figure 6.2: Two adjacent cells separated by a common interface with normal direc-
tion ~nLR.

L to R. Consider the same semi-discrete update for conservative variables

VL∂tuL = ((fL,gL,hL) − (f∗,g∗,h∗)) · ~nLR

VR∂tuR = ((f∗,g∗,h∗) − (fR,gL,hL)) · ~nLR (6.59)

In terms of entropy variables, this is

VL∂tUL = vT
L((fL,gL,hL) − (f∗,g∗,h∗)) · ~nLR

VR∂tUR = vT
R((f∗,g∗,h∗) − (fR,gL,hL)) · ~nLR (6.60)

The total change of entropy at the interface would be

VL∂tUL + VR∂tUR = vT
L((fL,gL,hL) − (f∗,g∗,h∗)) · ~nLR

+ vT
R((f∗,g∗,h∗) − (fR,gL,hL)) · ~nLR

= −[v]T (f∗,g∗,h∗) · ~nLR + vT (f,g,h) · ~nLR

Using the result of 6.13, it can be shown that

VL∂tUL + VR∂tUR = −[v]T (f∗,g∗,h∗) · ~nLR + [ρ(u, v, w) · ~nLR] + [(F,G,H) · ~nLR]

(6.61)
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We want the RHS to be equal to the discrete entropy fluxes hence

[v]T (f∗,g∗,h∗) · ~nLR = [ρ(u, v, w) · ~nLR] (6.62)

or in another form

[v]T f∗n = [ρun] (6.63)

This is exactly the one dimensional constraint for entropy conservation but in a

more general form. The entropy stable and entropy consistent fluxes are also easily

extended to multi dimensions with minimal modifications which is included in the

appendix C. However, the extension to a residual distribution scheme in fully multi

dimensional form is not so straightforward although a beginning has been made [84].

6.5 One Dimensional Gas Dynamics Problems

We will now test the new flux function with several problems satisfying the one

dimensional Euler equations. Recall that our definition of a numerical flux function

is

f∗ = f∗sym − ψ (6.64)

where we have decomposed the interface flux into its symmetric and asymmetric

parts. From now on, we will refer to a numerical flux function by a short hand

notation combining various options of the two parts. For example, A-R flux refers to

the arithmetic mean for the symmetric part with the original Roe-dissipation for the

asymmetric portion. Roe’s entropy stable flux with Roe-averaging will be referred

to as EC1-RV1 whereas EC1-RV2 is the same flux function with the newly proposed

set of averaging. Note that it is also possible to have the new symmetric flux with

the old asymmetric flux and vice-versa.
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Figure 6.3: EC1-RV1 scheme (Roe aver-
aging) at T=1000.
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Figure 6.4: A-R and EC1-RV2 schemes
at T=1000.

Note that the our new flux formulation is only based on a semi-discrete analysis

which means that strictly speaking, the flux function is stable only for very small

Courant numbers (ν → 0). However, we shall see that for most cases, its solution is

stable for ν ≤ 0.8 in one dimension and approximately half of that in two dimensions.

It is known, [71], [96] that using a semi-discretely entropy conserving flux in an

explicit fully discrete scheme results in a reduction of entropy which is destabilizing.

6.5.1 Modelling Stationary Contact Discontinuity

Although we expect this new flux function to prevent carbuncles from happening,

it is also important that the flux function keeps most (if not all) of the good properties

of current methods. For a start, let us observe if this new flux function is able to

preserve a stationary contact discontinuity.

The following initial value problem is prescribed with zero slopes on the inflow

and out flow boundaries and 50 computational cells with ν = 0.8.

ρL = 10, ρR = 1, uL = uR = 0, pL = pR = 1 (6.65)
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Figure 6.5: A-R scheme at T=1000.
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Figure 6.6: EC1-RV2 at T=17.
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Figure 6.7: EC1-RV2 with entropy fix at
T=17.
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Figure 6.8: 2nd Order EC1-RV2 (Har-
monic) at T=17.

Results are shown in Figs. (6.3-6.4) where clearly, Roe-averaging smears the contact

discontinuity unlike the new averaging. This outcome agrees with the predictions

from theory mentioned in 6.3.2. From now on, we will only use the newly proposed

averaging for the EC1-RV2 flux function.
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6.5.2 Omitting Rarefaction Shocks

This a one dimensional problem with an interface separated by a left and right

state with M0 is the upstream Mach number and γ = 1.4, the normalized upstream

(state 0) and downstream (state 1) conditions are given by

U1 =

[

1 1 1
γ(γ−1)M2

0

+ 1
2

]

U0 =

[

f(M0) 1 g(M0)

γ(γ−1)M2

0

+ 1
2f(M0)

]

(6.66)

where f(M0) and g(M0) are the jump conditions of density and pressure across the

shock given by

f(M0) = (
2

(γ + 1)M2
0

+
γ − 1

γ + 1
)−1

g(M0) =
2γM2

0

(γ + 1)
− γ − 1

γ + 1
(6.67)

We have selected ν = 0.7 with 50 computational cells and zero slopes at the bound-

aries. Except for the boundary conditions and having the upstream and downstream

conditions flipped over, this is exactly the same initial value problem for the one

dimensional carbuncle as described in chapter 2.

As expected, the first order Roe-scheme recognizes this as a rarefaction shock

(Fig 6.5) which is totally unphysical. The EC1-RV2 scheme however, sees it as an

expansion wave but exhibiting a dogleg pattern (Fig. 6.6). Including the entropy

fix seems to smooth out the situation. Although using a second order method may

seem to be a bit premature at this stage, nevertheless, we have used the EC1-RV2

flux with the second order Hancock scheme. The second order results also smooth

out the dogleg.

The EC1-RV2 flux function is designed to capture only contact discontinuities as

a single jump and other type of discontinuities will be smoothed out proportional to
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M0 νmax

≤ 4 0.9
4-6 0.7
6-8 0.5
8-10 0.4
10-16 0.2
16-20 0.1

Table 6.1: Stability limit for various upstream conditions.

the change of the entropy variables. This explains why the rarefaction is diffused but

the question remains whether this smoothing process will badly deteriorate shock

profiles. We will obtain that information in the next section.

6.5.3 Modelling Stationary Shock

This is similar to the initial value problem introduced in the previous section

except that the upstream and downstream conditions are switched. Also, the left

boundary is fixed to the upstream Rankine Hugoniot conditions with non reflecting

boundary conditions on the right. The initial value problem is run until the solution

residual is O(10−13). Note that the A-R scheme would maintain the initial value

data for all Mach numbers and so their stationary shock results are omitted11. We

would like to see how the EC1-RV2 would measure up against the A-R scheme. To

avoid the solution from blowing out of proportion, the Courant number must be

restricted to a smaller value for high upstream Mach number. Although we have not

performed any rigorous mathematical proof for stability, Table 6.1 summarizes our

findings based on numerical experience in one dimension.

The EC1-RV2 flux produces shock solution with intermediate cells with the num-

ber cells being introduced is proportional to the magnitude of the shock. This implies

11For this special case, having this property is desirable but we have seen before this may lead to
shock instability.
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Figure 6.9: EC1-RV2 for M0 = 1.5.
Note there are spurious over-
shoot and undershoot near
the shock.
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Figure 6.10: EC1-RV2 (with entropy fix)
at M0 = 1.5.
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Figure 6.11: EC1-RV2 at M0 = 2.0.
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Figure 6.12: EC1-RV2 (with entropy fix)
at M0 = 2.0.

that we would expect more intermediate cells for higher upstream Mach numbers,

roughly about 2 cells for M0 ≤ 8 and 3 cells for M0 ≤ 20. Although we no longer have

shock captured as a single jump, however, we also have not completely diffused the

shock like we have diffused the rarefactions shocks indicated in the previous section.

We will further test the new flux function with some standard benchmark problems
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Figure 6.13: EC1-RV2 at M0 = 4.0.
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Figure 6.14: EC1-RV2 (with entropy fix)
at M0 = 4.0.
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Figure 6.15: EC1-RV2 for M0 = 8. Note
there is a small undershoot
downstream of the shock.
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Figure 6.16: EC1-RV2 (with entropy fix)
at M0 = 8.0. Shock is
slightly smeared.

in one dimensional gas dynamics.

6.5.4 Sod’s Shock Tube Problem

We have seen that the EC1-RV2 flux function performs well in capturing rar-

efactions and stationary (steady state) discontinuities. Now we want to check if the

scheme can do the same for unsteady problems which consist of moving discontinu-
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Figure 6.17: EC1-RV2 at M0 = 16.0.
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Figure 6.18: EC1-RV2 (with entropy fix)
at M0 = 16.0.
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Figure 6.19: EC1-RV2 at M0 = 20.0.
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Figure 6.20: EC1-RV2 (with entropy fix)
at M0 = 20.0. The shock
is more diffused when com-
pared with no entropy fix.
The smearing can be im-
proved using a second order
scheme.

ities and rarefactions. We refer to Sod’s problem [110] where

pL = 105, ρL = 1.0, uL = 0.0 (6.68)

pR = 104, ρR = 0.125, uR = 0.0 (6.69)
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Figure 6.21: Second order EC1-RV2
(fix) at M0 = 20.0 using
Minmod limiter.
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Figure 6.22: Second order EC1-RV2
(fix) at M0 = 20.0 using
Harmonic limiter. The
shock profile is much
’tighter’.

utilizing 100 computational cells. We have tested the EC1-RV2 flux (with entropy

fix) and their results are almost identical to those produced by the original Roe (A-

R) flux Figs. (6.23-6.26). The discontinuity on right represents a moving shock in

which the first order EC1-RV2 (fix) flux captures the shock with 3 intermediate cells

compared to 2 cells captured via the original Roe-flux. The middle discontinuity

represents a moving contact discontinuity which is more difficult to capture. First

order results of both A-R and EC1-RV2 fluxes capture the contact discontinuity

with 8 intermediate cells. Second order solutions of both fluxes however, capture

the contact discontinuity with only 4 intermediate cells. The point here is that, the

new EC1-RV2 flux function is able to matched up against the A-R flux which is

a Godunov-type flux, and perceived by most in the CFD community as the best

numerical discontinuity capturing method [109], [18], [78], [25], [112], [40].

Note that we have used ν = 0.7 for all cases which implies that the semi-discrete
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formulation goes far beyond what it was expected to do. However, for ν> 0.8, we

have spurious overshoots for first order EC1-RV2 flux even with entropy fix. Without

entropy fix, the EC1-RV2 flux can only be monotonicity preserving for ν ≤ 0.6.

6.5.5 Woodward and Collela’s Double Blast Problem

This test case is taken from [114] where we have a shock tube of length one with

reflecting walls at x = 0 and x = 1. The initial values are given as


































p = 103, ρ = 1.0, u = 0.0 if 0 ≤ x < 0.1

p = 10−2, ρ = 1.0, u = 0.0 if 0.1 ≤ x < 0.9

p = 102, ρ = 1.0, u = 0.0 if 0.9 ≤ x ≤ 1.0

(6.70)

We have chosen 1200 cells to be consistent with the choice of Woodward and Collela.

The exact solutions are computed via a second order Hancock scheme with the

Harmonic limiter using 4800 computational cells.

This is a gas dynamic problem where the gases will be compressed by the high

pressures at both ends of the tube and then collide with each other. [114] computed

this problem with a third order scheme but we have only computed the problem with

a first order method. Clearly, our numerical results will not be satisfactory compared

to the exact or even their third order solutions but again the point is to demonstrate

that the EC1-RV2 flux produce results which are almost identical to those produced

by the original Roe flux. Figs 6.27-6.30 will justify this.

Overall, from our numerical experiments thus far, we can conclude that by directly

including the physics of entropy, we can better predict rarefactions and still able to

capture crisp contact discontinuities. However, we have compromised a little bit on

capturing shocks due to the inclusion of intermediate states within the shock. This

is maybe the price that we have to pay in order to prevent the carbuncle.
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Figure 6.23: Density plot of Sod’s prob-
lem for A-R flux.
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Figure 6.24: EC1-RV2 flux with fix.
Note how its solution is
comparable to A-R’s.
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Figure 6.25: Second order A-R flux with
harmonic limiter. The con-
tact is now captured with
only 4 intermediate cells.
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Figure 6.26: Second order EC1-RV2 flux
(fix) with harmonic limiter.
Almost identical to the sec-
ond order A-R flux.
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Figure 6.27: Density plot for A-R flux
before collision of the waves
with solid lines representing
exact solution.
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Figure 6.28: Density plot of the EC1-
RV2 (fix) before collision of
the waves.
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Figure 6.29: Density plot for A-R flux
after the collision of the
waves.
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Figure 6.30: EC1-RV2 flux with fix. Al-
though the solution is not
as sharp as the exact solu-
tion, it is comparable to A-
R’s..
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6.6 A New Method of Controlling the Carbuncle II: Con-
trolling Entropy

We will now attempt to cure the carbuncle phenomenon with the new flux func-

tion. Except for the two dimensional carbuncle, the set up and nature of the other

carbuncle problems were presented in details in chapter 2 thus we will only focus on

the results using the new flux function.

6.6.1 The 1 dimensional carbuncle

From Figs. 6.31-6.36, the EC1-RV2 flux does not suffer from the carbuncle phe-

nomenon for all upstream Mach numbers 1.5 ≤ M0 ≤ 20.0, for various specific heat

ratios γ = 1.1, 1.2, .., 1.4, 1.5, 1.67 and for all ǫ = 0.0, 0.1, ..., 0.9, 1.0. The steady-state

solutions are stable and converged to residual of O(10−13). However, the solutions

are not monotone across the shock unless we include the entropy fix. Larger values of

α are needed for larger mass flux deviations of the intermediate cell (corresponding

to ǫ = 0.6, 0.7, 0.8) . For conciseness, we will only include results of the EC1-RV2

flux without entropy fix for the 1 dimensional carbuncle. The results of EC1-RV2

with entropy fix can be infered from the one dimensional solutions of the same flux

function in the 1 1/2 dimensional carbuncle problem12.

For brevity, we have only included the results for M0 = 8.0 and γ = 1.4. For

this set of upstream Mach number and specific heat ratio, the maximum mass-

flux deviation for the intermediate cell occurs when ǫ = 0.7. From our numerical

experience, this maximum mass flux deviation corresponds to the most unstable

configuration hence will be the chosen as an example to demonstrate the effectiveness

12For the same upstream Mach number, sometimes the 1 dimensional carbuncle requires a much
higher coefficient for entropy fix (up to α = 0.6) when ǫ = 0.6, 0.7.
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of the EC1-RV2 flux. Results of the A-R flux are also included for comparison

purposes. It must be emphasized that the A-R solution oscillates due to shock

instability. Although it is almost impossible to verify this from a still picture but

this can be inferred from the log plot of residual (Fig 6.35). Oscillations in the

residual corresponds to oscillations occurring within the shock profile. Note that for

all cases, we have chosen ν = 0.1 with 25 computational cells.

6.6.2 The 1 1/2 dimensional carbuncle

The EC1-RV2 flux function is also tested with the 1 1/2 dimensional carbuncle.

We chose ν = 0.1 use 25 x 25 computational cells. The carbuncle is seeded with a

point perturbation of O(10−14). We have tested the scheme for the range of Mach

numbers and γ given in the 1 dimensional carbuncle. We found that the EC1-RV2

scheme is also carbuncle-free in 1 1/2 dimensions.

Since 1 1/2 dimensional carbuncle is just stacks of the 1 dimensional carbuncle

problem in y-direction, we expect that the cross-sectional solution across any y-plane

of the former will be identical to the solution of the later if the prescribed conditions

are the same. Hence for brevity, we will not include the cross-sectional solution if it

has already been presented in the one dimensional carbuncle. Results of the 1 1/2

dimensional carbuncle are included in Figs. 6.37-6.51.

Note how monotonicity is achieved when the entropy fix of section 6.3.3 is applied.

In addition, using a second order limited Hancock scheme with the new flux function

give a tighter shock profile. For M0 = 20.0, we are able to capture the shock with

only 3 intermediate cells using Minmod limiter (Fig. 6.50) without suffering any

shock instability.

Moreover, from this exercise we can conclude that by directly including the en-
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tropy conservation law in the numerical flux function, we have not only prevented the

generation of spurious vorticity (Fig. 6.51) but more importantly, we have prevented

the carbuncle and any other form of shock instability from occurring.

6.6.3 The 2 dimensional carbuncle

This is a steady state numerical simulation of a blunt body subjected to a high

Mach number flow in two dimensions. Genuine prediction of the flow requires cap-

turing of a smooth bow shock profile upstream of the body. Unfortunately, most

schemes with minimal artificial dissipation13 are unable to achieve this [78], [81],

[40], [89] because they produce shock anomalies around the stagnation region. This

steady state hypersonic blunt body simulation will be the ultimate test for the EC1-

RV2 flux function.

We have chosen a cylinder as the blunt body which is subjected to a fixed free-

stream Mach number M0 of diatomic gas γ = 1.4 or mono atomic gas γ = 1.67. We

will utilize quadrilateral cells with solid wall boundary conditions for the cylinder

and on-reflecting for the outflow.

Our numerical experiment is conducted for Mach numbers ranging from 2.0 ≤

M0 ≤ 30.0 and for both mono atomic and diatomic gases. However, we will only

include the results for M0 = 20.0 and γ = 1.4 using first order A-R, EC1-RV2 and

EC1-RV2 (fix) flux functions. Note that the iteration is performed until a residual

of O(10−12) is achieved.

As expected, the A-R flux suffers from the carbuncle phenomenon but the EC1-

RV2 flux does not exhibit any form of shock instability or carbuncle for the range of

13Minimal dissipation in the sense that the scheme can capture crisp shocks and contact discon-
tinuities and preserve boundary layers.
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Mach numbers specified above and for either mono atomic or diatomic gases.. The

results for M0 = 20.0 with γ = 1.4 are included in Figs. 6.54,6.66. In addition, the

EC1-RV2 flux predicts the stagnation region much more accurately than the A-R

flux (Figs 6.67-6.68). However, the EC1-RV2 without entropy fix generate spurious

oscillations in its shock profile (Figs 6.57-6.63) but this is easily remedied with the

proposed entropy fix (Figs 6.69-6.72). The choice of α = 0.2 seems to be sufficient

to maintain monotone shock profiles for almost all the cases that we have tested.

For most test cases, we have restricted ourselves in using a Courant number ν = 0.2

but for some cases, we were able to achieve stability even up to ν ≤ 0.8. To further

demonstrate and convince the reader of the capability of the EC1-RV2 flux, we have

also included its results for M0 = 30.0 (Figs. 6.73-6.78) in which is still carbuncle-

free.

Prediction of Stagnation Conditions at the Body Surface (y=0)

From Fig 6.79-6.80, it is clear that the EC1-RV2 (with entropy fix) flux predicts

the stagnation pressure and temperature much more accurately than those produced

by the AR flux. When it comes to predicting stagnation temperature at the body,

the AR flux is off by about 20 percent than the analytical prediction. The prediction

of stagnation pressure is even worse for the AR flux, deviating from the analytical

solution by an average of 50 percent. However, the EC1-RV2 flux produces at most

2 percent error when predicting either the stagnation pressure or temperatures.

Varying Aspect Ratio of Grid

It is known in the literature that the carbuncle is more prone to occur when

the grid is finer along the captured the shock [78], [25]. In two dimensional cylin-

der problem, this means that we have a finer mesh and hence less damping in the
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azimuthal direction. To perform this test, we have chosen a very coarse mesh in

the radial direction (20 cells) but with varying mesh size in the azimuthal direction

(200,400 and 600 cells). Our computational results indicate that the the EC1-RV2

flux (with and without entropy fix) is carbuncle free for all of the grid configurations

and for various Mach numbers 2.0 ≤ M0 ≤ 20.0. However, we have only included

the results for M0 = 20.0 for brevity (Figs 6.81-6.86). Note that the shock is slightly

thicker than those produced with 80 x 160 cells merely because we have utilized a

very coarse mesh in the radial direction.

To conclude, the EC1-RV2 flux is carbuncle-free when tested with the 1, 1 1/2

and 2 dimensional carbuncle problems. However, the EC1-RV2 flux requires the

entropy fix proposed in section 6.3.3 to achieve monotone shock profiles. It must

be emphasized that when simulating these shocks, for upstream conditions M0 ≥ 6,

we need to include the physics of chemistry and real gas in order for the numerical

simulation to be truly valid. However, we did not do so in this thesis since our

goal was to design a carbuncle-free algorithm for pure inviscid hypersonic flow with

perfect gas and no chemistry assumptions and we were able to achieve that with the

EC1-RV2 flux function. We hope that the success of EC1-RV2 flux will carry over not

only to three dimensional viscous computations but also to simulation that includes

chemistry and real gas effects14 and in any arbitrary body or domain configuration.

All of these will subjects of future research.

14Since the carbuncle phenomenon is independent of the real gas and chemistry effects [40].
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Figure 6.31: Mach profile of 1D car-
buncle using A-R flux at
T=10000.
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Figure 6.32: Mach profile of EC1-RV2
flux at T=10000.
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Figure 6.33: Density profile of A-R flux
at T=10000.
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Figure 6.34: Density profile of EC1-RV2
flux at T=10000.
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Figure 6.35: Residual plot of A-R flux.
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Figure 6.36: Residual plot of EC1-RV2.
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Figure 6.37: A-R flux Mach contours
of the 1 1/2 dimensional
carbuncle (M0 = 8.0) at
T=10000.
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Figure 6.38: EC1-RV2 flux Mach con-
tours at M0 = 8.0. Note
the cross-sectional solution
are identical to Fig. 6.32.
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Figure 6.39: A-R flux density contours
at T=10000 with M0 = 8.0.
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Figure 6.40: EC1-RV2 flux density con-
tours with M0 = 8.0.
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Figure 6.41: Residual plot of A-R flux.
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Figure 6.42: Residual plot of EC1-RV2.
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Figure 6.43: EC1-RV2 flux with entropy
fix Mach contours with
M0 = 8.0.
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Figure 6.44: The cross-sectional solu-
tion of EC1-RV2 (fix) flux
in which monotonicity is
achieved.
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Figure 6.45: Density contours of the
EC1-RV2 flux with entropy
fix.
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Figure 6.46: The cross-sectional density
solution of EC1-RV2 (fix).
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Figure 6.47: 2nd order EC1-RV2 (fix)
with Minmod at M0 = 8.0.
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Figure 6.48: The cross-sectional solution
of 2nd order EC1-RV2 (fix)
having a tighter shock.
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Figure 6.49: 2nd order EC1-RV2 (fix)
with Minmod at M0 =
20.0.
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Figure 6.50: The cross-sectional 2nd or-
der solution at M0 = 20.0.
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Figure 6.51: The total enstrophy (vorticity squared) within the computational do-
main for each time-step for the EC1-RV2 flux when solving the 1 1/2
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conclude that by controlling entropy we have prevented the generation
of spurious vorticity and shock instability all together.
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Figure 6.52: A-R flux at M0 = 20.0. A
typical carbuncle profile.
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Figure 6.53: The quadrilateral 80 x 160
cells.
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Figure 6.54: EC1-RV2 flux at M0 = 20.0
with no carbuncle.
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Figure 6.55: EC1-RV2 captures shock
with only 3 intermediate
cells.
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Figure 6.56: Mach profile along y = 0
(stagnation region) for A-R
flux. Note how the shock
profile exhibit violent spuri-
ous oscillations in the stag-
nation region.
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Figure 6.57: EC1-RV2 flux without en-
tropy fix. A much better
shock profile, with 3 inter-
mediate cells but the solu-
tion is not monotone.
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Figure 6.58: Density profile along y = 0
(stagnation region) for A-R
flux. The solution is com-
pletely off.
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Figure 6.59: EC1-RV2 flux without en-
tropy fix. A much bet-
ter solution compared to A-
R flux but spurious over-
shoots are present.
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Figure 6.60: U profile along y = 0 (stag-
nation region) for A-R flux.
The negative velocity rep-
resents reverse flow within
the stagnation region.

XCoord

U

-2 -1.75 -1.5 -1.25
0

0.25

0.5

0.75

1

1.25

Figure 6.61: EC1-RV2 flux without en-
tropy fix. By far, a much
better solution at the stag-
nation region in which the
velocity drops rapidly af-
ter crossing the shock and
slowly decreases to zero as
the fluid approaches the
stagnation point .
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Figure 6.62: Pressusre profile along y =
0 (stagnation region) for A-
R flux. The solution is com-
pletely off.
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not monotone.
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Figure 6.64: The residual (in absolute value) plot for the A-R flux for Mach 20 flow
past a two-dimensional cylinder. Note the oscillations depict shock
instability. By the time the solution goes to steady-state, it would
have produced a spurious but weakly consistent solution of the Euler
equations.
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Figure 6.65: The residual (in absolute value) plot for the new flux function EC1-
RV2 predicting the Mach 20 flow past a two dimensional cylinder. The
residual goes to machine zero smoothly for the most part.
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Figure 6.66: EC1-RV2 flux with entropy fix at M0 = 20.0 with no carbuncle.
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Figure 6.67: Stagnation point predicted
by AR flux at M0 = 20.0.
Note how its location is
completely off.
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Figure 6.68: Stagnation point predicted
by EC1-RV2 flux with en-
tropy fix at M0 = 20.0.
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Figure 6.69: The Mach profile of EC1-
RV2 flux with entropy fix at
M0 = 20.0. Monotonicity is
achieved.
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EC1-RV (fix) flux at M0 =
20.0. A much improved so-
lution compared to solution
without entropy fix.
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Figure 6.71: U-velocity profile for EC1-
RV2 flux with entropy fix at
M0 = 20.0.
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Figure 6.72: Pressure profile for EC1-
RV2 flux with entropy fix at
M0 = 20.0.



198

XCoord

Y
C

oo
rd

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Mach
30

27

24

21

18

15

12

9

6

3

0

Figure 6.73: EC1-RV2 flux with entropy fix at M0 = 30.0 with no carbuncle.
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Figure 6.74: Stagnation point predicted by EC1-RV2 flux with entropy fix at M0 =
30.0.
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Figure 6.75: The Mach profile of EC1-
RV2 flux with entropy fix at
M0 = 30.0. Monotonicity is
still achieved but the shock
profile is slightly broader
than those produced with
M0 = 20.0.
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Figure 6.76: Density profile along y =
0 (stagnation region) for
EC1-RV (fix) flux at M0 =
30.0.
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Figure 6.77: U-velocity profile for EC1-
RV2 flux with entropy fix at
M0 = 30.0.
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RV2 flux with entropy fix at
M0 = 30.0.
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Figure 6.80: The normalized stagnation temperatures (Ts/t0) at the cylinder surface
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only produces about 2 percent error compared to the exact stagnation
temperature as opposed to 20 percent error produced by the AR flux.
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Figure 6.81: EC1-RV2 (fix) with 20 x
200 cells.
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Figure 6.82: Zooming into the mesh of
20 x 200 cells.
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Figure 6.83: EC1-RV2 (fix) with 20 x
400 cells.
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Figure 6.84: Zooming into the mesh of
20 x 400 cells.
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Figure 6.85: EC1-RV2 (fix) with 20 x
600 cells.
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Figure 6.86: Zooming into mesh of 20 x
600 cells.



CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we have conducted a systematic series of investigation to understand

the nature of the carbuncle problem in order to determine its root and provide a

solution to completely eliminate the problem. To simplify our investigation, we have

examined the model carbuncle problem, specifically the 1 and 1 1/2 dimensional

steady shocks. Major results include the following:

• Results from our numerical experiments coupled with analytical and numerical

results of others led us to believe that the carbuncle problem is universal and

can described by 3 distinct stages: “Pimples”, where initial shock instability

occurs along the shock; “Bleeding”, where the pimples are propagated or ’bleed’

downstream of the shock; “Carbuncle”, where the shock instability goes into

reverse flow and penetrate upstream of the shock.

• In 1 1/2 dimensional carbuncle, spurious vorticity is generated along and down-

stream of the shock, which we initially thought was the reason behind the

carbuncle. However, the shock instability still persist when solving the 1 1/2

dimensional planar shock with a vorticity capturing scheme, thus we have con-
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cluded that spurious vorticity is just a symptom but not the cause of the

carbuncle.

• By analyzing the 1 dimensional steady shock, based on the results of Barth

[6] and ours, we made a conjecture stating that the imprecise enforcement of

entropy or the Second Law of Thermodynamics in the Godunov-type flux is

the root of shock instability. In multi dimensions, this shock instability is in the

form of “pimples” which may “bleed” and generate spurious vorticity before

finally it becomes a carbuncle.

• In order to improve current technology of numerical entropy control, we have

developed a new conservative, upwinded and entropy-consistent flux function

(EC1-RV2 flux). The flux function is a coupling of Roe’s practical and relatively

inexpensive entropy conserving flux [84] with his entropy stable dissipative flux

but using our proposed averaged formulation for the latter. In addition, we

have semi-empirically determined an entropy fix to generate enough entropy

production across a shock ensuring monotonicity of the solution.

• We have tested the EC1-RV2 flux function with various numerical problems

in 1, 1 1/2 and 2 dimensions. The results are very much comparable to those

produced by the original Roe method with these exceptions. One, the new

flux function does not produce any carbuncle or any form of shock instability

when capturing weak, moderate or strong shocks1. Two, the new flux function

does not capture the unphysical rarefaction shock, capturing it instead as a

reasonably smooth expansion region as it should be. Three, the EC1-RV2 flux

1By weak, we mean transonic flow; Moderate means supersonic flow; Strong means hypersonic
flow.
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predicts more accurate stagnation conditions at the body surface deviating

by only 2 percent from the exact inviscid solution compared to more than 20

percent error predicted by the original Roe-flux (Fig 6.79-6.80).

• The EC1-RV2 flux function totally eliminates the carbuncle phenomenon with-

out sacrificing the ability to capture crisp contact discontinuities. For years,

many have believed [81], [52], [83] and even claimed to have, mathematically

proven [45] that the two properties cannot co-exist but we have presented sev-

eral numerical counter examples in chapter 6 to disprove the theory.

• The EC1-RV2 flux function is developed based on one dimensional principles

hence it should be readily extended to multi dimensional finite volume methods

based on one dimensional fluxes in any grid formulation and either structured or

unstructured. Moreover, the formulation of entropy conservation is of a general

fluctuation splitting technique so the physics of directly including entropy in

the numerics is not limited only to a finite volume scheme but can be of a finite

element nature.

In addition, we have also developed a novel continuum approach for vorticity

capturing. The method is truly an unsteady, upwinded and conservative vorticity

capturing scheme (VC) for solving the two dimensional system of Euler equations.

The following will highlight the motivation for developing the method and some of

the features and achievements of the method.

• We have mathematically proven that the vorticity preserving Lax-Wendroff

type scheme developed by Morton and Roe [73] is not vorticity preserving when

solving the two dimensional linear wave equations with constant advection if

the process of nonlinear limiting is included.
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• In order to circumvent this severe restrictrion, we have developed a vorticity

correctional algorithm which makes small adjustments to the flux evaluation

at each cell interface to ensure vorticity is physically conserved. By being

conserved, we mean that the computed vorticity obeys the discrete vorticity

transport equations. When computing the Euler equations, the vorticity trans-

port equations are based on the curl of momentum to ensure conservation of

the primary Euler variables.

• This vorticity correctional algorithm solves a Poisson equation at each time

step which is dependent on the numerical computation of the discrete vor-

ticity transport equations. We have formulated a conservative and upwinded

numerical method to predict the discrete vorticity transport equations in two

dimensions based on the technology of incompressible CFD.

• Our vorticity capturing method is fundamentally based on conservatively mod-

ifying (minutely) the flux at the cell interface hence can be used with any good

flux function. For this thesis, we have employed the original Roe-flux combined

with second order (limited) Hancock time integration scheme.

• The second order vorticity capturing scheme (VC-2) accurately captures the

features of an inviscid travelling vortex with less than 2 percent error than the

exact solution in terms of total enstrophy measurement. The first order Roe

flux dissipated almost 60 percent of enstrophy while the second order Roe-flux

generated more than 20 percent of spurious enstrophy for the same amount of

time.

• Our error analysis indicate that by combining the new vorticity capturing

method with the second order Hancock scheme, the order of accuracy in pre-
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dicting the conservative Euler variables does not deteriorate. In fact, the ac-

curacy of predicting vorticity is doubled when the vorticity capturing method

is included in the Hancock scheme.

7.2 Future Work On Vorticity Capturing

In this thesis, our vorticity capturing formulation is restricted to uniform Carte-

sian grids in two dimensions. There is still a need to extend the current work to

arbitrary grid formulations although a beginning has been made in the context of

linear wave equations [73]. In addition, the sub-iterations performed for the vorticity

corrections (Poisson equation) in this thesis are based on the Gauss-Seidel method

which is not the most efficient method solving the Poisson equation. To speed up

the sub-iterations, we propose the multigrid method. Since the multigrid is usually

employed as a ’black box’ method, we believe it can be easily implemented to solve

our Poisson equation and that will be one of our immediate plans for future work.

As mention before, vorticity capturing depends on vorticity discretization. In

other words, vorticity is only captured at a specific grid location where it was designed

to be captured. In two dimensions, we have several options to capture discrete

vorticity which is either at the cell center, cell-edge or cell vertices. In this thesis,

even though the main variables are conserved at the cell centers, vorticity is captured

at the cell vertices as to minimize the spurious modes. In three dimensions however,

we have more degrees of freedom in choosing where vorticity should be captured.

However, we choose to capture vorticity at the midpoint2 of the cell edges as

shown in Fig. 7.1. It was chosen because by doing so, we would still produce

the minimum number of spurious modes and use the minimum amount of discrete

2This is to also minimize the spurious modes.
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Figure 7.1: A three dimensional cell with vorticity location and flux corrections.

operators in three dimensions. In short, edges that are parallel to the x-direction

are chosen to be the location of vorticity pointing in that direction Ωx. Similarly,

Ωy and Ωz are located at the midpoint of cell edges that are parallel in the y and

z-directions respectively. We are now ready to construct the vorticity corrections in

three dimensions.

7.2.1 Vorticity Corrections in Three Dimensions

We will assume that we have a uniform Cartesian mesh in three dimensions and

the formulation is restricted to solving a three dimensional system of Euler equations.

Let any ’good’3 one dimensional based flux function solving the fluxes along the x,y

and z-directions be defined as f, g and h. Hence the modified fluxes at the cell

3Good here means a numerically convergent flux.
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interfaces will be

f̃ = f − Cx (7.1)

g̃ = g − Cy (7.2)

h̃ = h − Cz (7.3)

where (Cx,Cy,Cz) are flux corrections located at the center of the cell-faces with

normal pointing in the (x, y, z) directions. Note that each flux corrections alters the

respective momentum equations at the cell interface in the tangential directions4 as

indicated in Fig. 7.1 and can be written as

Cx = [0, 0, cxy, cxz, 0]T (7.4)

Cy = [0, cyx, 0, cyz, 0]T (7.5)

Cz = [0, czx, czy, 0, 0]T (7.6)

By discretizing the three dimensional Euler equations (refer to appendix A) using

the standard and modified fluxes, we have

un+1
i,j,k = un

i,j,k −
∆t

h2
[fn

i+ 1

2
,j,k

− fn
i− 1

2
,j,k

+ gn
i,j+ 1

2
,k
− gn

i,j− 1

2
,k

+ hn
i,j,k+ 1

2

− hn
i,j,k− 1

2

] (7.7)

ũn+1
i,j,k = ũn

i,j,k −
∆t

h2
[f̃n

i+ 1

2
,j,k

− f̃n
i− 1

2
,j,k

+ g̃n
i,j+ 1

2
,k
− g̃n

i,j− 1

2
,k

+ h̃n
i,j,k+ 1

2

− h̃n
i,j,k− 1

2

] (7.8)

where un
i,j,k and ũn

i,j,k are the standard and modified cell averages of the conservative

variables at coordinate (i,j,k) and time level n. We define pseudo-vorticity Ωx,Ωy,Ωz

as shown in Fig 7.1 through the compact difference of four neighboring cell-center

4The flux corrections are now second order tensors. For example, cxy is a flux correction located
at the center of cell-interface normal in x-direction and alters the y-momentum.
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momenta (ρ~u) hence the corrected and uncorrected vortices are related by

Ω̃n+1
x = Ωn+1

x +
∆t

h3
[µzδ

2
ycyz − µyδ

2
zczy + µzδxδycxz − µyδxδzcxy]

n (7.9)

Ω̃n+1
y = Ωn+1

y +
∆t

h3
[µxδ

2
zczx − µzδ

2
xcxz + µxδyδzcyx − µzδxδycyz]

n (7.10)

Ω̃n+1
z = Ωn+1

z +
∆t

h3
[µyδ

2
xcxy − µyδ

2
ycyx + µyδxδzczy − µxδyδzczx]

n (7.11)

where now we have the correctional dependence in the third dimension. Again we in-

sist that the corrected vorticity be identical to some independent numerical estimate

such that

Ω̃n+1
x = Ωn+1

IND,x (7.12)

Ω̃n+1
y = Ωn+1

IND,y (7.13)

Ω̃n+1
z = Ωn+1

IND,z (7.14)

and to achieve this we will use subiterations within the timestep. Denote conditions

after the kth subiteration by ()k and conditions after the subiterations have converged

by ()∞. The problem that we wish to solve is

Ω∞

x = Ωn+1
IND,x = Ωn+1

x +
∆t

h3
[µzδ

2
yc

∞

yz − µyδ
2
zc

∞

zy + µzδxδyc
∞

xz − µyδxδzc
∞

xy] (7.15)

Ω∞

y = Ωn+1
IND,y = Ωn+1

y +
∆t

h3
[µxδ

2
zc

∞

zx − µzδ
2
xc

∞

xz + µxδyδzc
∞

yx − µzδxδyc
∞

yz] (7.16)

Ω∞

z = Ωn+1
IND,z = Ωn+1

z +
∆t

h3
[µyδ

2
xc

∞

xy − µyδ
2
yc

∞

yx + µyδxδzc
∞

zy − µxδyδzc
∞

zx] (7.17)



210

where c∞xy, c
∞

yx, c
∞

xz, c
∞

zx, c
∞

yz, c
∞

zy are the corrections that need to be determined. The

sub-iterations that bring this about are

Ωk+1
x = Ωk

x +
∆t

h3
[µzδ

2
y(c

k+1
yz − ckyz) − µyδ

2
z(c

k+1
zy − ckzy) + µzδxδy(c

k+1
xz − ckxz) − µyδxδz(c

k+1
xy − ckxy)]

(7.18)

Ωk+1
y = Ωk

y +
∆t

h3
[µxδ

2
z(c

k+1
zx − ckzx) − µzδ

2
x(c

k+1
xz − ckxz) + µxδyδz(c

k+1
yx − ckyx) − µzδxδy(c

k+1
yz − ckyz)]

(7.19)

Ωk+1
z = Ωk

z +
∆t

h3
[µyδ

2
x(c

k+1
xy − ckxy) − µyδ

2
y(c

k+1
yx − ckyx) + µyδxδz(c

k+1
zy − ckzy) − µxδyδz(c

k+1
zx − ckzx)]

(7.20)

where we assume Ωn+1
x ,Ωn+1

y ,Ωn+1
z as the initial values for the sub-iterations. The

particular choices

ck+1
xy − ckxy = ζµy(Ω

k
z − Ωn+1

IND,z)

ck+1
zx − ckzx = −ζµx(Ω

k
z − Ωn+1

IND,z)

ck+1
xz − ckxz = ζµx(Ω

k
y − Ωn+1

IND,y)

ck+1
yx − ckyx = −ζµz(Ω

k
y − Ωn+1

IND,y)

ck+1
zy − ckzy = −ζµy(Ω

k
x − Ωn+1

IND,x)

ck+1
yz − ckyz = ζµz(Ω

k
x − Ωn+1

IND,x)

with ζ as a parameter that restricts the iteration step will lead to

Ωk+1
x = Ωk

x + κ[(µ2
zδ

2
y + µ2

yδ
2
z)∆Ωk

x − (µ2
zδxδy∆Ωk

y + µ2
yδxδz∆Ωk

z)] (7.21)

Ωk+1
y = Ωk

y + κ[(µ2
xδ

2
z + µ2

zδ
2
x)∆Ωk

y − (µ2
xδyδz∆Ωk

z + µ2
zδxδy∆Ωx

z)] (7.22)

Ωk+1
z = Ωk

z + κ[(µ2
yδ

2
x + µ2

xδ
2
y)∆Ωk

z − (µ2
yδxδz∆Ωk

x + µ2
xδyδz∆Ωk

y)] (7.23)
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Figure 7.2: A planar view of computing vorticity using four neighboring cells.

where κ = ζ∆t
h3 is the sub-iterative step with vorticity discrepancies

∆Ωk
x = Ωk

x − Ωn+1
IND,x (7.24)

∆Ωk
y = Ωk

y − Ωn+1
IND,y (7.25)

∆Ωk
z = Ωk

z − Ωn+1
IND,z (7.26)

so that we arrive to a similar Poisson equation as in two dimensions but with extra

terms that reflect a three dimensional nature. For example, if we look at Ωz, the

corrections depend on ∆Ωz or (cxy, cyx) (cell-interfaces normal in (x, y) directions)

and on the interfaces normal in the z directions, (czx, czy).

7.2.2 The Independent Inviscid Vorticity Estimate in Three Dimensions

In three dimensions, we have the vortex stretching as source terms in the vorticity

transport equation, hence the equation is no longer a pure hyperbolic conservation

law. Recall that the vorticity transport equations based on the curl of momentum

written in vector form

∫∫∫

V

[
∂~Ω

∂t
+ ∇ · (~Ω ◦ ~U) + ∇× [~U(Φ)]]dV =

∫∫∫

V

[(~Ω · ∇)~U ]dV (7.27)

The terms on the left hand side correspond to unsteady vorticity, vorticity advection

and compressibility effects and the last two terms can be rewritten in conservative-
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flux form by the Divergence Theorem. By adding another dimension, these terms

can be discretized straightforwardly using the same conservative techniques in two

dimensional discretization given in chapter 4.

On the other hand, the right hand side represents vortex stretching and is a

non-conservative nonlinear source term which can be evaluated using a numerical

quadrature techniques. We will not go into the details of evaluating the source term.

However, it must be emphasized that there is much success in numerically predicting

conservation laws with nonlinear source terms and would refer to the interested

reader to some excellent sources [61], [10], [43].

7.3 Future Work On the Entropy-Consistent Flux

In this thesis, we have presented a semi-discrete entropy conserving flux beginning

from a fluctuation splitting ideology in one dimension and by a different interpreta-

tion, converting it to a finite volume (FV) formulation in one dimension. From the

FV context, we are able to easily extend the results to multi dimensions. However,

the same cannot be said when extending the fluctuation splitting method even to

higher dimensions although [84] has made a start.

In addition, we would like to investigate the if the EC1-RV2 flux function can

predict boundary layers with minimal smearing when coupled with an accurate dif-

fusion method. If successful, the EC1-RV2 flux function will possibly be the new

methodology in predicting shock-boundary layer interactions.

The results of this thesis, when viewed as a whole, represents a significant ad-

vancement toward a reliable numerical prediction of hypersonic flow, holding the

promise of making computational methods a practical and reliable tool in designing

hypersonic vehicles.
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APPENDIX A

Scaling Matrix for the Dissipative Flux

The three dimensional Euler equations can be written in conservative form.

∂tu + ∂xf(u) + ∂yg(u) + ∂zh(u) = 0 (A.1)

where the conservative variables are mass, momentum and energy u = [ρ, ρu, ρv, ρw, ρE]T

and their conservative fluxes are given as

f(u) =





























ρu

ρu2 + p

ρuv

ρuw

ρuH





























, g(u) =





























ρv

ρuv

ρv2 + p

ρvw

ρvH





























, h(u) =





























ρw

ρuw

ρvw

ρw2 + p

ρwH





























(A.2)

where the total energy and total enthalpy are defined as E = e + u2+v2+w2

2
and

H = E + P
ρ
. The compatibility relation between pressure and internal energy e is

used for closure, p = ρe(γ − 1) and γ is the fluids ratio of specific heats.

The Euler equations can be cast into a non-conservative formulation written as

∂tu + A∂xu +B∂yu + C∂zu = 0 (A.3)

where the Jacobian matrices are defined as

A =
∂f

∂u
, B =

∂g

∂u
, C =

∂h

∂u
(A.4)
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in which each Jacobian matrix is explicitly written as

A =





























0 1 0 0 0

(γ − 1)H − u2 − a2 (3 − γ)u −(γ − 1)v −(γ − 1)w γ − 1

−uv v u 0 0

−uw w 0 u 0

u
2
((γ − 3)H − a2) H − (γ − 1)u2 −(γ − 1)uv −(γ − 1)uw γu





























(A.5)

B =





























0 0 1 0 0

−uv v u 0 0

(γ − 1)H − v2 − a2 −(γ − 1)u (3 − γ)v −(γ − 1)w γ − 1

−vw 0 w v 0

v
2
((γ − 3)H − a2) −(γ − 1)uv H − (γ − 1)v2 −(γ − 1)vw γv





























(A.6)

C =





























0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0

(γ − 1)H − w2 − a2 −(γ − 1)u −(γ − 1)v (3 − γ)w γ − 1

w
2
((γ − 3)H − a2) −(γ − 1)uw −(γ − 1)vw H − (γ − 1)w2 γw





























(A.7)

These matrices have real eigenvalues with linearly independent eigenvectors hence

can be diagonalized. For example, we can write A = RuΛuLu where Ru is the matrix

which contains the right eigenvectors of A and Λu is the matrix of the diagonalized

eigenvalues and the left eigenvector is defined as Lu = R−1
u . It can be shown by



216

direct computation that

Ru =





























1 1 0 0 1

u− a u 0 0 u+ a

v v 1 0 v

w w 0 1 w

H − ua u2+v2+w2

2
v w H + ua





























(A.8)

Λu =





























u− a 0 0 0 0

0 u 0 0 0

0 0 u 0 0

0 0 0 u 0

0 0 0 0 u+ a





























(A.9)

Lu =





























H + a
γ−1

(u− a) −(u+ a
γ−1

) −v −w 1

−2H + 4a2

γ−1
2u 2v 2 −2

−2va2

γ−1
0 2a2

γ−1
0 0

−2va2

γ−1
0 0 2a2

γ−1
0

H + a
γ−1

(u+ a) −u+ a
γ−1

) −v −w 1





























(A.10)

Hence the wave-strengths can be written as

Ludu =





























1
2
(dp

a2 − ρdu
a

)

dρ− ρdp
a2

ρdv

ρdw

1
2
(dp

a2 + ρdu
a

)





























(A.11)

Recall that physical entropy is defined as S = ln p − γln ρ and that our conserved



217

entropy is defined as U = − ρS
γ−1

. Hence the entropy variables

v =
∂U

∂u
=





























γ−S
γ−1

− ρ
2p

(u2 + v2 + w2)

ρu
p

ρv
p

ρw
p

−ρ
p





























(A.12)

It can be shown by direct computation that there exists a diagonal matrix

S =





























ρ
2γ

0 0 0 0

0 (γ−1)ρ
γ

0 0 0

0 0 p 0 0

0 0 0 p 0

0 0 0 0 ρ
2γ





























(A.13)

such that

Ludu = SRT
udv

T (A.14)

Moreoever, if we decompose B = RvΛvLv and C = RwΛwLw, it also can be shown

that the same matrix S satisfies the following.

Lvdu = SRT
v dv

T (A.15)

Lwdu = SRT
wdv

T (A.16)

The matrix S is the scaling matrix required for the new dissipative flux R|Λ|SR[v]

given in chapter 6.
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APPENDIX B

Two Dimensional Hancock Scheme

The Hancock scheme[110], [97] is a MUSCL type finite volume scheme [107] en-

forced in a predictor-corrector fashion, much like the Richtmayer scheme of the Lax-

Wendroff family. The scheme is a second order accurate in both time and space

discretizations. At the predictor level, it performs a limited half-step in time, uti-

lizing the primitive Euler variables1 providing provisional solutions within the cells.

We use these provisional solutions to determine the fluxes at the cell interfaces. Fi-

nally, at the corrector level (full step), the scheme conservatively updates the each

cell quantities using these fluxes. Before we explicitly introduce the scheme, recall

that the two dimensional primitive Euler equations can be written as

∂tw + Aw∂xw + Bw∂yw = 0 (B.1)

where the matrices Aw and Bw are given as

Aw =





















u ρ 0 0

0 u 0 1
ρ

0 0 u 0

0 ρa2 0 u





















, Bw =





















v 0 ρ 0

0 v 0 0

0 0 v 1
ρ

0 0 ρa2 v





















(B.2)

1Although the conservative variables can also be used[97].
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The Hancock scheme carried out on a Cartesian grid with cell center located at (i, j)

can be expressed as the following. The half-step formulation is

w̃i,j = wn
i,j −

∆t

2
(Aw

δxwi,j

∆x
+ Bw

δywi,j

∆y
)n (B.3)

giving the provisional solution to solve for the fluxes at the interfaces2 i.e.

f̃i+ 1

2
,j = f(w̃i+ 1

2
L,j, w̃i− 1

2
R,j) (B.4)

g̃i,j+ 1

2

= g(w̃i,j+ 1

2
L, w̃i,j− 1

2
R) (B.5)

where the fluxes can evaluated using the original Roe flux (appendix D) or the EC1-

RV2 flux(appendix C) with the time centered interface values given as

w̃i+ 1

2
L,j = w̃i,j +

δxwi,j

2
(B.6)

w̃i− 1

2
R,j = w̃i,j −

δxwi,j

2
(B.7)

The limited slopes are computed by comparing the two neighboring slopes at (i, j)

dimension by dimension i.e.

δxwi,j = φ(wi,j − wi−1,j,wi+1,j − wi,j) (B.8)

with similar approach in the y-direction. The limiter function φ can be any of the

conventional one dimensional limiter [94] which can be written as

φ(a, b) =



















minmod(a+b
2
, 2a, 2b), if ab > 0,

0, if ab ≤ 0

(B.9)

which is the double minmod limiter and the superbee limiter

φ(a, b) =



















minmod(maxmod(a, b),minmod(2a, 2b)), if ab > 0,

0, if ab ≤ 0

(B.10)

2We have only provided flux interface evaluations at (i+ 1
2 , j) and (i, j + 1

2 ) but similar methods
can be used applied to solve for the fluxes at (i − 1

2 , j) and (i, j − 1
2 ) interfaces
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and finally the harmonic limiter

φ(a, b) =



















2∗maxmod(a,b)
a+b

, if ab > 0,

0, if ab ≤ 0

(B.11)

Finally the corrector (full step) for the Hancock scheme updates the conservative cell

values at time level n+ 1

un+1
i,j = un

i,j − ∆t(
f̃i+ 1

2
,j − f̃i− 1

2
,j

∆x
+

g̃i,j+ 1

2
,j − g̃i,j− 1

2

∆y
) (B.12)

Note that if δxwi,j = 0, the Hancock scheme becomes a first order forward Euler

method. Hence for an arbitrary grid formulation in two dimensions, the first order

Hancock scheme can be written as

un+1
i,j = un

i,j −
∆t

Aij

(
∑

faces

(f∆y − g∆x))ij (B.13)

where Aij is the volume of cell with centers (i, j).
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APPENDIX C

Two Dimensional Finite Volume Discretization of

the EC1-RV2 Flux

From the notes of [110], the Euler equations can be semi-discretized on arbitrary

grids in two dimensions via a finite volume formulation.

∂tuij = − 1

Aij

(
∑

faces

(f∆y − g∆x))ij (C.1)

where i, j represent the center-coordinates of a particular cell with the area of the

cell denoted by Aij. We compute the fluxes across each cell interface and obtain

the total net flux within the cell as the sum of all the interface-fluxes1. Define the

length of a particular cell-face f as ∆lf =
√

(∆x)2
f + (∆y)2

f as shown in Fig. C.1,

the normal and tangential velocities at f are given by

qf =
u∆y − v∆x

∆lf

rf =
u∆x+ v∆y

∆lf
(C.2)

Combining these results with the information from appendix A, we have the normal

1For triangular grids, we take the sum of three interfaces. For quadrilateral grids, it will be four
interfaces.
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V

l
r

q∆

i,j

x

y

∆

∆

x

y

Figure C.1: A sample arbitrary cell with normal and tangential velocities (q, r) w.r.t
to a particular interface.

flux through the cell-face f as

f∆y − g∆x =





















ρq

ρuq + p1
∆y
∆l

ρvq − p1
∆x
∆l

ρqH





















∆lf = Ff∆lf (C.3)

with the total enthalpy H = 1
2
(u2 + v2) + γ

γ−1
p2

ρ
. Note that we have defined two

pressures p1, p2 and each pressure will be computed differently.

Define two neighboring cell states as L and R which is separated by a common

cell-face f . The net flux across cell-face f is obtained by adding the symmetric

entropy conserving flux with an entropy stable (or consistent) dissipative flux given

by2

Ff (uL,uR) = FC(uL,uR) − 1

2
R̂|Λ̂Ŝ|R̂T[v]

= FC(uL,uR) − 1

2

4
∑

k=1

|λ̂kŜk|[Vk ]̂rk (C.4)

2Recall that [a] = aR − aL.
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The entropy conserving flux is computed as averaged quantities written as

FC(uL,uR) =





















ρ̂q̂

ρ̂ûq̂ + p̂1
∆y
∆l

ρ̂v̂q̂ − p̂1
∆x
∆l

ρ̂q̂Ĥ





















(C.5)

Define parameter vectors

z1 =

√

ρ

p
, z2 =

√

ρ

p
u, z3 =

√

ρ

p
v, z4 =

√
ρp (C.6)

so that the averaged quantities are computed as functions of arithmetic (ā = aL+aR

2
)

and logarithmic mean (defined in appendix E)

ρ̂ = z̄1z
ln
4 (C.7)

û =
z̄2

z̄1

(C.8)

v̂ =
z̄3

z̄1

(C.9)

p̂1 =
z̄4

z̄1

(C.10)

p̂2 =
γ + 1

2γ

zln
4

zln
1

+
γ − 1

2γ

z̄4

z̄1

(C.11)

â = (
γp̂1

ρ̂
)

1

2 (C.12)

Ĥ =
1

2
(û2 + v̂2) +

γ

γ − 1

p̂2

ρ̂
(C.13)

and q̂ and r̂ are determined via equations in (C.2) using averaged velocities.

The dissipative flux has averaged wave-speeds given by λ̂k = [q̂ − â, q̂, q̂, q̂ + â]

with the Ŝ as the averaged scaling matrix (obtained from appendix A) and r̂k as the
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columns of the averaged right eigenvectors

R̂ =





















1 1 0 1

û− â∆y
∆l

û ∆x
∆l

û+ â∆y
∆l

v̂ + â∆x
∆l

v̂ ∆y
∆l

v̂ − â∆x
∆l

Ĥ − q̂â û2+v̂2

2
r̂ Ĥ + q̂â





















(C.14)

and the new averaged wave-strengths are given as

[Vk] = R̂T [v]

=





















[v1] + (û− â∆y
∆l

)[v2] + (v̂ + â∆x
∆l

)[v3] + (Ĥ − q̂â)[v4]

[v1] + û[v2] + v̂[v3] + û2+v̂2

2
[v4]

∆x
∆l

[v2] + ∆y
∆l

[v3] + r̂[v4]

[v1] + (û+ â∆y
∆l

)[v2] + (v̂ − â∆x
∆l

)[v3] + (Ĥ + q̂â)[v4]





















(C.15)

with [vk] defined as the change in the entropy variables between the left and right

states across a particular cell-face

[v] =





















[γ−S
γ−1

− ρ(u2+v2)
2p

]

[ρu
p

]

[ρv
p
]

−[ρ
p
]





















(C.16)

Note that the dissipative flux also uses the same averaging as the entropy-conserving

flux. Although there are two choices for pressure for the averaging the speed of sound

and within the scaling matrix S, we chose p̂1.

We have only presented an entropy-stable flux function. To achieve entropy-

consistency, we need to modify the acoustic wave-speeds (k = 1, 4) as explained in
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chapter 6 section 3.3 given as

|Λ̂fix| =





















|λ̂1| + α|[λ1]| 0 0 0

0 |λ̂2| 0 0

0 0 |λ̂3| 0

0 0 0 |λ̂4| + α|[λ4]|





















(C.17)

However, from our numerical experience, the selection of α = 0.2 works well for

almost all cases that we have tested.

Entropy Fix II

We propose another form of entropy fix, by directly adding a diffusion operator

to the conservative variables, i.e.

Ff (uL,uR) = FC(uL,uR) − 1

2
R̂|Λ̂Ŝ|R̂T[v] − D̂[u] (C.18)

where D̂ = β|max(λ̂1, λ̂4)f(p)| and

f(p) =



















0.0 if [p]
p̂1

≤ ǫ,

1.0 otherwise

(C.19)

We assume ǫ to be a very small number, and this function is used to identify contact

discontinuities in which no extra dissipation is needed. β is the diffusion coefficient

where bigger values means more dissipation although we have found that β = 0.1 is

optimal. From our numerical experiments, this entropy fix is more robust than the

one described earlier.
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APPENDIX D

Two Dimensional Finite Volume Discretization of

the Roe Flux

We have the same arbitrary two dimensional grid formulation as given in appendix

C except that now, the interface flux is computed as

Ff (uL,uR) =
1

2
(F(uL) + F(uR)) − 1

2

4
∑

k=1

|λ̂k|[Vk ]̂rk (D.1)

in which the wavespeeds (eigenvalues) and column right eigenvectors are given in C

(but averaged differently) and the wave strengths are

[Vk] =





















[p]−ρ̂â[q]
2â2

−([p]−â2[ρ])
â2

ρ̂[r]

[p]+ρ̂â[q]
2â2





















(D.2)

with (q, r) given in appendix C. The hat quantities represent Roe-averaged values

ρ̂ = WρL (D.3)

û =
uL +WuR

1 +W
(D.4)

v̂ =
vL +WvR

1 +W
(D.5)

Ĥ =
HL +WHR

1 +W
(D.6)

where W =
√

ρR/ρL and the averaged sound speed â =
√

(γ − 1)(Ĥ − û2+v̂2

2
).
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APPENDIX E

The Logarithmic Mean

Let a be some quantity of interest which has a left and right state. The logarithmic

mean of a is defined as

aln(L,R) =
aL − aR

ln(aL) − ln(aR)
(E.1)

However, this is not numerically well-posed when (aL) → (aR). To overcome this,

let us write the logarithmic mean in another form. Let ζ = aL

aR
, so that

aln(L,R) =
aL + aR

lnζ

ζ − 1

ζ + 1
(E.2)

where ln(ζ) = 2(
1 − ζ

1 + ζ
+

1

3

(1 − ζ)3

(1 + ζ)3
+

1

5

(1 − ζ)5

(1 + ζ)5
+

1

7

(1 − ζ)7

(1 + ζ)7
+O(ζ9))

to obtain a numerically well-formed logarithmic mean. The subroutine for computing

the logarithmic mean is the following. Let

ζ =
aL

aR

, f =
(ζ − 1)

(ζ + 1)
, u = f ∗ f

1. if (u < ǫ)

F = 1.0 + u/3.0 + u ∗ u/5.0 + u ∗ u ∗ u/7.0

2. else

F = ln(ζ)/2.0/(f)

so that aln(L,R) = aL+aR

2F
with ǫ = 10−2
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APPENDIX F

Entropy Fix for EC1-RV2 Flux: Generating the

”Correct” Sign of Entropy Production

We want to show that as long as α ≥ 0, the entropy fix will generate positive

entropy production regardless if we have an expansive or compressive region. Define

the system of conservation laws for the inviscid fluid dynamics to be

∂tu + ∂xf(u) = 0 (F.1)

where u = [ρ, ρu, ρE]T and f(u) = [ρu, ρu2 + p, ρuH]T . Recall that the entropy

function U = −ρS
γ−1

where S is the physical entropy hence the entropy variables

v =
∂U

∂u
= [

γ − S

γ − 1
− 1

2

ρ

p
(u2),

ρu

p
,−ρ

p
]T (F.2)

Now let us discretize (F.1) semi-discretely in one dimension within an element ∗ with

nodes (L,R).

hL∂tuL = fL − f∗, hR∂tuR = f∗ − fR (F.3)

Multiplying the last equation by v will give

hL∂tUL = vL(fL − f∗), hR∂tUR = vL(f∗ − fR) (F.4)

so that the total entropy update within the element ∗ is

∂t(hLUL + hRUR) = −[v · f ] + [v]Tf∗ (F.5)
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Recall that interface flux consists of the symmetric entropy conserving flux subtracted

by the asymmetric upwinded-entropy-consistent flux f∗ = fC− 1
2
R̂|Λ̂fix|ŜR̂T[v], hence

∂t(hLUL + hRUR) = [v · f ] + [v]TfC − 1

2
[v]TR̂|Λ̂fix|ŜR̂T[v]

The first two terms on the RHS are equal to [F ] by definition of entropy conservation

thus

h∂tU + [F ] = −1

2
(R̂T[v])TŜ|Λ̂fix|(R̂T[v]) = −1

2
ŴTŜ|Λ̂fix|Ŵ (F.6)

is the semi-discrete entropy conservation law with a production term and Ŝ ≥ 0 is

the diagonal scaling matrix satisfying L̂[u] = ŜR̂T[v]. Recall that

|Λ̂fix| =















|λ̂1| + α|[λ̂1]| 0 0

0 |λ̂2| 0

0 0 |λ̂3| + α|[λ̂3]|















(F.7)

which implies that as long as α ≥ 0, the entropy production generated by the entropy

fix will be positive regardless if we have expansive or compressive region.
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APPENDIX G

Discrete Operators

We will focus on simple finite difference formulations on two dimensional uniform

grids. Define h and to be the discretized grid space in x,y directions while ∆t is

the time step. Let un
i,j be a discrete approximation located at cell-center (x, y, t) =

(ih, jh, n∆t). The discrete differencing and averaging operators are defined by

δx().,. = ().+ 1

2
,. − ().− 1

2
,. (G.1)

δy().,. = ().,.+ 1

2

− ().,.− 1

2

(G.2)

µx().,. =
1

2
[().+ 1

2
,. + ().− 1

2
,.] (G.3)

µy().,. =
1

2
[().,.+ 1

2

− ().,.− 1

2

] (G.4)

The result of any above operator will lie half-way between the two inputs. We may

also utilize the product of two operators. For example, µxδx()i,j is a central difference

of 1
2
[()i+1,j − ()i−1,j] in the x-direction located at grid point i, j. Another example is

the compact difference µyδx()i,j, which involves four points (i± 1
2
, j ± 1

2
) of a square

centered at grid i, j Fig G.1. Assume prime and non-prime variables to be quantities

located at the vertices and cell-center respectively. Capitalized variables define edge

values in two dimensions. Cells are points with all integer coordinates while vertices

are points with all half integer coordinates. On the other hand, points with one
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vertices

cells

      i,j+1

   i+1/2,j+1/2

        i,j     i+1,j,

   i+1,j+1

  i,j

i−1/2,j+1/2 i+1/2,j+1/2

i+1/2,j−1/2i−1/2,j−1/2

Figure G.1: Product of two operators on cells and vertices

integer and one half integer coordinate define an edge. The following product of

operators will describe some of the the discretized notations used in the thesis.

µxµy(u) =
1

4
[(u)i+1,j+1 + (u)i,j+1 + (u)i,j + (u)i+1,j] (G.5)

µyδx(u) =
1

2
[(u)i+1,j+1 + (u)i+1,j − (u)i,j+1 − (u)i,j] (G.6)

µxδy(u) =
1

2
[(u)i+1,j+1 + (u)i,j+1 − (u)i+1,j − (u)i,j] (G.7)

where it is understood that the product of the above operators will lie on a vertex

with coordinates (i + 1
2
, j + 1

2
). Likewise, applying these operators on the vertex

quantities gives us the following.

µxµy(u
′) =

1

4
[(u′)i+ 1

2
,j+ 1

2

+ (u′)i− 1

2
,j+ 1

2

+ (u′)i− 1

2
,j− 1

2

− (u′)i+ 1

2
,j− 1

2

] (G.8)

µyδx(u
′) =

1

2
[(u′)i+ 1

2
,j+ 1

2

+ (u′)i+ 1

2
,j− 1

2

− (u′)i− 1

2
,j+ 1

2

− (u′)i− 1

2
,j− 1

2

] (G.9)

µxδy(u
′) =

1

2
[(u′)i+ 1

2
,j+ 1

2

+ (u′)i− 1

2
,j+ 1

2

− (u′)i+ 1

2
,j− 1

2
,k− 1

2

− (u′)i− 1

2
,j− 1

2
,k− 1

2

] (G.10)

in which the resulting products live in a cell with coordinate (i, j). Note that in this

thesis, we only use compact vorticity defined as ω = µyδx(v) − µxδy(u), where cell

variables are utilized to compute vorticity at the vertices.
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APPENDIX H

Jump Conditions

t

x

L

R

Shock

Figure H.1: A sample control volume with a right running shock. Assume that the
shock has thickness → 0.

We will perform a closed integral around the space-time control volume containing

a left uL and right uR states separated by a shock moving at speed Λ = ∆x
∆t

,

∮

(udx− fdt) = uR∆x− fR∆t− uL∆x+ fL∆t

= (Λ(uR − uL) − (fR − fL))∆t

= 0 ⇒ [f ] = Λ[u] (H.1)

if we have conservation across the shock. However, if we do not have conservation,

there will be a production term such that

∮

(udx− fdt) = P ⇒ [f ] = Λ[u] + P (H.2)
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ABSTRACT

TOWARD A RELIABLE PREDICTION OF SHOCKS IN HYPERSONIC FLOW:

RESOLVING CARBUNCLES WITH ENTROPY AND VORTICITY CONTROL

by

Farzad Ismail

Chairperson: Philip L. Roe

Numerical shock prediction is a critical aspect of computing aerodynamic flows

especially under hypersonic conditions. Presently, shock capturing methods are com-

monly used to predict shocks in various settings from simple to complex configura-

tions and for low subsonic to moderate supersonic flows with considerable success.

However, most shock capturing methods fall short in predicting strong, steady shocks.

This is a crucial element in designing hypersonic vehicles. Except for perhaps a few

notoriously diffusive schemes, all schemes in Computational Fluid Dynamics (CFD)

exhibit some form of anomalies when predicting strong shocks. The most infamous

of these anomalies is the “carbuncle” phenomenon.

The carbuncle phenomenon can be observed when computing supersonic or hy-

personic flow past a blunt body, for example, a circular cylinder. Instead of having

a smooth bow shock upstream of the cylinder, there exists a pair of oblique shocks



ahead of the stagnation point. The carbuncle evolves in three distinct stages: “pim-

ple”, “bleeding” and “carbuncle”. The “pimple” represents initial shock instability

whereas the “bleeding” depicts these instabilities being propagated downstream of

the shock. The “carbuncle” stage ‘weakly’ satisfies the Euler equations but cannot

be observed experimentally except by some artificial setup.

The oblique shocks contain a pair of spurious counter rotating vortices hence the

carbuncle is maybe due to inadequate vorticity control. In this thesis, a new vorticity

capturing method is introduced. The method is originally developed to prevent the

carbuncle, however, it could also be used to predict more general vortical flows. This

includes Blade-Vortex-Interaction (BVI) in helicopter analysis, prediction of high-lift

systems and unsteady flights where vorticity capturing is extremely important.

Another possible source of the carbuncle is due to imprecise enforcement of en-

tropy in shock capturing methods. To overcome this, the concept of directly including

entropy conservation law in a numerical flux function will be introduced. It will be

shown that although vorticity control does eliminate the carbuncle, it must be done

very strongly, and sometimes the results are not satisfactory. Control of entropy, on

the other hand, eliminates the carbuncle directly with no side-effects.


