Week 1 (Lecture 2)

Stability of ODE

Dr. Farzad Ismail

School of Aerospace and Mechanical Engineering Universiti Sains Malaysia Nibong Tebal 14300 Pulau Pinang

Overview

Coding in the machines were the easy part, needed to establish mathematical principles upon which the coding is based.

One of the most important principles is the concept of <u>stability.</u>

Can be illustrated by solving the simple ODE problem

Find u(t) such that

$$\frac{du}{dt} = au$$

a > 0, subject to the initial condition (I.C)

$$u(0) = u^0$$

This problem is almost trivial since we know the exact analytical solution.

The analytical solution is

$$u(t) = u^0 \exp(at)$$

The question is what is the numerical solution?

Assume we are interested in 0 < t < T, we divide time into small intervals of Δt or

$$n = \frac{T}{\Delta t}$$

discrete time levels

$$u^n \approx u(n\Delta t)$$

It is the nth value of u, not u-to-power-n

Use Taylor series to find

$$u^{n+1} = u^n + \Delta t u_t^n + O(\Delta t^2)$$
$$\approx u^n (1 + a \Delta t)$$

This is an example of a numerical method to solve

 $\frac{du}{dt} = au$

More generally,

$$u^{n+1} \approx u^n (1 + \alpha \Delta t^p)$$

Will this numerical method work?

It can be shown that the predicted result would be

$$u(T) = u^0 (1 + \alpha \Delta t^p)^{T/\Delta t}$$

Rearrange, see what happens if we make time steps smaller,

$$u(T) = u^0 (1 + \alpha T \Delta t^{p-1} \frac{\Delta t}{T})^{T/\Delta t}$$

Recall that, $\lim_{n \to \infty} (1 + a/n)^n = \exp(a)$ hence,

$$\lim_{\Delta t \to 0} u(T) = u^0 \exp[\alpha T(\Delta t^{p-1})]$$

As we decrease Δt (refinement),

• What happen if p < 1 and $\alpha > 0$?

• What happen if p > 1 and $\alpha > 0$?

What is the correct solution?

$$\lim_{\Delta t \to 0} u(T) = u^0 \exp[\alpha T]$$

Solution is <u>stable</u>, but is it the correct solution? The solution is correct (<u>consistent</u>) if and only if $\alpha = a$

For a certain class of *linear* problems, *Lax Equivalence Theorem says*

Stability + Consistency = Convergence

$$(p=1) + (\alpha = a) = (\lim_{\Delta t \to 0} u(T) \to exp[aT])$$

Why would someone be so stupid to choose other than p=1 and $\alpha=a$?

In more complicated cases, something like this might happen due to either a misconception or

Programming error !

The computer does not know what is wrong or right !

It only knows to process/compute whatever is being fed in !

Stability versus Consistency

A numerical scheme is unconditionally <u>stable</u> if its solution does not 'blow up' as the time-steps (or grids) are continuously being refined.

A numerical scheme is consistent if the *local* difference between the exact solution and numerical solution approaches zero as the time steps (or grids) are refined $(h \rightarrow 0)$.